Description

在列奥纳多·达·芬奇时期,有一个流行的童年游戏,叫做“连珠线”。不出所料,玩这个游戏只需要珠子和线,珠子从1到礼编号,线分为红色和蓝色。游戏 
开始时,只有1个珠子,而接下来新的珠子只能通过线由以下两种方式被加入: 
1.Append(w,杪):-个新的珠子w和一个已有的珠子杪连接,连接使用红线。 
2.Insert(w,u,v):-个新的珠子w加入到一对通过红线连接的珠子(u,杪) 
之间,并将红线改成蓝线。也就是将原来u连到1的红线变为u连到w的蓝线与W连到V的蓝线。 
无论红线还是蓝线,每条线都有一个长度。而在游戏的最后,将得到游戏的 
最后得分:所有蓝线的长度总和。 
现在有一个这个游戏的最终结构:你将获取到所有珠子之间的连接情况和所 
有连线的长度,但是你并不知道每条线的颜色是什么。 
你现在需要找到这个结构下的最大得分,也就是说:你需要给每条线一个颜 
色f红色或蓝色),使得这种连线的配色方案是可以通过上述提到的两种连线方式 
操作得到的,并且游戏得分最大。在本题中你只需要输出最大的得分即可。

Input

第一行是一个正整数n,表示珠子的个数,珠子编号为1刭n。 
接下来n-l行,每行三个正整数ai,bi(l≤ai10000),表示有一条长度为ci的线连接了珠子ai和珠子bi。

Output

输出一个整数,为游戏的最大得分。

Sample Input

5
1 2
1 3 4 0
1 4 1 5
1 5 2 0

Sample Output

60

HINT

数据范围满足1≤n≤200000。

题解:

假如确定了根,再通过若干操作得到这棵树,那么对于insert(w,u,v)操作,u,w,v必然为祖父节点-父节点-子节点的形式

然后可以O(n)的枚举根,设 f[i][0/1] 表示以i为根的子树,i是否为中转点的情况下,子树蓝边的最大总和是多少

这个可以O(1)的从儿子转移过来,所以dp的复杂度为O(n),但总复杂度为O(n2

我们可以在状态里多加一个0/1,即设 f[i][0/1][0/1] 表示以i为根的子树,以i的为子树里除去i以外是否有根节点,i是否为中转点的情况下,子树蓝边的最大总和是多少

当以i的为子树里除去i以外没有根节点,和前面的转移一样

否则,就会多一种转移,设根节点在j,就是可以有insert(i,j,x),其中x是i的另一个子节点

code:

 #include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
char ch;
bool ok;
void read(int &x){
for (ok=,ch=getchar();!isdigit(ch);ch=getchar()) if (ch=='-') ok=;
for (x=;isdigit(ch);x=x*+ch-'',ch=getchar());
if (ok) x=-x;
}
const int maxn=;
const int maxm=maxn*;
const int inf=;
int n,a,b,c;
int f[maxn][][];
struct Graph{
int tot,now[maxn],son[maxm],pre[maxm],val[maxm];
int premax[maxn],sufmax[maxn],g[maxn];
void put(int a,int b,int c){pre[++tot]=now[a],now[a]=tot,son[tot]=b,val[tot]=c;}
void add(int a,int b,int c){put(a,b,c),put(b,a,c);}
void dfs(int u,int fa){
for (int p=now[u],v=son[p];p;p=pre[p],v=son[p]) if (v!=fa) dfs(v,u);
int cnt=,sum=; premax[]=sufmax[]=-inf;
for (int p=now[u],v=son[p];p;p=pre[p],v=son[p]) if (v!=fa)
g[v]=max(f[v][][],f[v][][]+val[p]),sum+=g[v],++cnt,premax[cnt]=sufmax[cnt]=f[v][][]+val[p]-g[v];
premax[cnt+]=sufmax[cnt+]=-inf;
for (int i=;i<=cnt;i++) premax[i]=max(premax[i],premax[i-]);
for (int i=cnt;i>=;i--) sufmax[i]=max(sufmax[i],sufmax[i+]);
f[u][][]=sum,f[u][][]=cnt?f[u][][]+premax[cnt]:-inf,f[u][][]=-inf;
for (int p=now[u],v=son[p],i=;p;p=pre[p],v=son[p]) if (v!=fa){i++;
int res=max(premax[i-],sufmax[i+]),tmp=sum-g[v];
f[u][][]=max(f[u][][],max(f[v][][]+val[p]+tmp,max(f[v][][],f[v][][])+tmp+max(val[p]+res,)));
f[u][][]=max(f[u][][],max(f[v][][],f[v][][])+val[p]+tmp);
}
}
}G;
int main(){
read(n);
for (int i=;i<n;i++) read(a),read(b),read(c),G.add(a,b,c);
G.dfs(,);
printf("%d\n",max(f[][][],f[][][]));
return ;
}

bzoj3677: [Apio2014]连珠线的更多相关文章

  1. [Bzoj3677][Apio2014]连珠线(树形dp)

    3677: [Apio2014]连珠线 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 434  Solved: 270[Submit][Status] ...

  2. 【BZOJ3677】[Apio2014]连珠线 换根DP

    [BZOJ3677][Apio2014]连珠线 Description 在列奥纳多·达·芬奇时期,有一个流行的童年游戏,叫做“连珠线”.不出所料,玩这个游戏只需要珠子和线,珠子从1到礼编号,线分为红色 ...

  3. 【LG3647】[APIO2014]连珠线

    [LG3647][APIO2014]连珠线 题面 洛谷 题解 首先考虑一下蓝线连起来的情况,一定是儿子-父亲-另一个儿子或者是儿子-父亲-父亲的父亲. 而因为一开始只有一个点在当前局面上,将一条红边变 ...

  4. 题解 [APIO2014]连珠线

    题解 [APIO2014]连珠线 题面 解析 首先这连成的是一棵树啊. 并且\(yy\)一下,如果钦定一个根, 那么这上面的蓝线都是爸爸->儿子->孙子这样的,因为像下图这样的构造不出来: ...

  5. 并不对劲的bzoj3677:p3647:[APIO2014]连珠线

    题目大意 有一种生成\(n\)个点的树的方法为: 一开始有一个点,\(n-1\)次操作,每次可以有两种操作:1.选一个点,用一条红边将它与新点连接:2.将新点放在一条红边上,新点与这条红边两端点直接的 ...

  6. APIO2014 连珠线

    题目链接:戳我 换根DP 由于蒟蒻不会做这个题,所以参考了大佬. 本来想的是有三种情况,一种是该节点不作为两个蓝线的中点(我们称这种不是关键节点),一种是该节点作为关键点.连两个子节点,一种是作为关键 ...

  7. bzoj 3677: [Apio2014]连珠线【树形dp】

    参考:http://www.cnblogs.com/mmlz/p/4456547.html 枚举根,然后做树形dp,设f[i][1]为i是蓝线中点(蓝线一定是父子孙三代),f[i][0]为不是,转移很 ...

  8. Luogu P3647 [APIO2014]连珠线

    题目 换根dp. 显然对于给定的一棵有根树,蓝线都不能拐弯. 设\(f_{u,0}\)表示\(u\)不是蓝线中点时子树内的答案,\(f_{u,1}\)表示\(u\)是蓝线中点时子树内的答案.(以\(1 ...

  9. 洛谷$P3647\ [APIO2014]$连珠线 换根$dp$

    正解:换根$dp$ 解题报告: 传送门! 谁能想到$9102$年了$gql$居然还没写过换根$dp$呢,,,$/kel$ 考虑固定了从哪个点开始之后,以这个点作为根,蓝线只可能是直上直下的,形如&qu ...

随机推荐

  1. Node.js&NPM的安装与配置(转)

    Node.js安装与配置 Node.js已经诞生两年有余,由于一直处于快速开发中,过去的一些安装配置介绍多数针对0.4.x版本而言的,并非适合最新的0.6.x的版本 情况了,对此,我们将在0.6.x的 ...

  2. android96 内存创建图片副本,画画板

    package com.itheima.copy; import android.os.Bundle; import android.app.Activity; import android.grap ...

  3. mysql 函数在源码中的定义

    大牛那海蓝蓝 MySQL提供了较为丰富的SQL语句,用以支持MySQL提供的主要功能.在数据库内部,MySQL又是怎么知道自己能够处理哪些对象.处理哪些事情的? 如果我们输入一条SQL语句,MySQL ...

  4. Ubuntu16.04/windows7修改本地hosts文件

    1. 从github上下载最新的hosts文件:https://serve.netsh.org/pub/ipv4-hosts/ ubuntu16.04: 第二步:Ctrl+Alt+T 打开ubuntu ...

  5. JS 时间与时间戳的相互转换

    <script type="text/javascript"> var time = "2015-04-22 21:41:43";//2015-4- ...

  6. 循环json里面的数据

    {{each company as cvalue i}}   {{each value.Goods as gvalue i}}   {{each gvalue.SKU as value i}}     ...

  7. CSS 隐藏多余的字符

    日常开发中常常会碰到,字符长度太大,撑破了样式的问题.如果采用截取的话,显然是不灵活的.但是通过css样式来控制显示就比较简单和高效了.下面是关键代码 样式名称{wedth:??px;height=? ...

  8. 利用Merge生成或更新新记录

    -- ============================================= -- Author: <华仔> -- Create date: <2016,6,7& ...

  9. 企业级搜索引擎Solr使用入门指南

    由于搜索引擎功能在门户社区中对提高用户体验有着重在门户社区中涉及大量需要搜索引擎的功能需求,目前在实现搜索引擎的方案上有集中方案可供选择: 基于Lucene自己进行封装实现站内搜索. 工作量及扩展性都 ...

  10. C#创建微信自定义菜单

    string posturl = "https://api.weixin.qq.com/cgi-bin/menu/create?access_token=" + access_to ...