题意就不说了。

分析:折腾好几天自己写的代码还是看了别人代码后发现几乎没什么复杂度的差别,可是就是一直超时,后来干脆照着别人写啊,一直WA,就在准备放弃干脆先写这篇博客的时候,又看了一眼WA的代码,发现一个中间变量没有取模直接爆掉了。终于AC了,做了好几天。

思路:对所有单词建立AC自动机,那么每个节点j转移到下一个节点k有方程:dp[i+1][k] =sum{dp[i][j]*Get},表示第i+1步位于k节点,并且由j节点转移过来,其中 Get =  ∏prime[i]*(len[i]+j)。 关键在于这里,结果是要对  179*173*163 取模, 而且Get函数和j有关,也就是走到了第j步,可以先将结果对179, 173, 163取模,然后利用中国剩余定理求出最终结果。

中国剩余定理,可以利用扩展欧几里得求出。我还是不知道我超时的原因,真是给跪了!!!!

别人代码也差不多4000+ms,我写的可能更搓了。

代码:

 #pragma comment(linker, "/STACK:16777216")
#include <cstdio>
#include <iostream>
#include <cstring>
#include <queue>
#include <vector>
#define inf 0x0f0f0f0f
#define in freopen("data.txt", "r", stdin);
#define pb push_back using namespace std;
typedef long long LL; const int maxnode = ;
const int sigma_size = ;
int prime[maxnode], vis[]; void getPrime() {
int cnt = ;
for(int i = ; i < && cnt <= ; i++) {
if(!vis[i]) prime[++cnt] = i;
for(int j = i*i; j < ; j += i)
vis[j] = ;
}
} struct Node {
int len, n;
Node(int len, int n): len(len), n(n) {}
};
int ch[maxnode][sigma_size], sz, f[maxnode]; vector<Node> vec[maxnode];
struct Matrix {
int a[][];
} xx[], E0;;
void maMul(Matrix x, Matrix y, Matrix &res, int mod) {
for(int i = ; i < sz; i++)
for(int j = ; j < sz; j++) {
res.a[i][j] = ;
for(int k = ; k < sz; k++) {
res.a[i][j] += x.a[i][k]*y.a[k][j]%mod;
if(res.a[i][j] >= mod)
res.a[i][j] -= mod;
}
}
}
struct AC { void init() {
sz = ;
memset(ch[], , sizeof ch[]);
vec[].clear();
}
int idx(char ch) {
return ch - 'A';
}
void insert(char *s, int x) {
int u = , len = ;
for(int i = ; s[i]; i++, len++) {
int c = idx(s[i]);
if(!ch[u][c]) {
memset(ch[sz], , sizeof ch[sz]);
vec[sz].clear();
ch[u][c] = sz++;
}
u = ch[u][c];
}
vec[u].pb(Node(len, prime[x]));
}
void getFail() {
queue<int> q;
f[] = ;
for(int c = ; c < sigma_size; c++) {
int u = ch[][c];
if(u) {
f[u] = ;
q.push(u);
}
}
while(!q.empty()) {
int r = q.front();
q.pop();
for(int c = ; c < sigma_size; c++) {
int u = ch[r][c];
if(!u) {
ch[r][c] = ch[f[r]][c];
continue;
}
q.push(u);
int v = f[r];
while(v && !ch[v][c]) v = f[v];
f[u] = ch[v][c];
}
}
}
void getMat(int x, int mod) {
for(int i = ; i < sz; i++) for(int j = ; j < sz; j++) xx[x].a[i][j] = ;
for(int u = ; u < sz; u ++)
for(int c = ; c < sigma_size; c++) {
int v = ch[u][c];
int tv = v;
int res = ;
while(tv) {
for(int i = ; i < (int)vec[tv].size(); i++) {
(res *= ((LL)(vec[tv][i].len+x)*vec[tv][i].n%mod))%=mod;
}
tv = f[tv];
}
xx[x].a[v][u] += res;
if(xx[x].a[v][u] >= mod) xx[x].a[v][u] -= mod;
}
}
} solver; int N;
LL L;
int M[] = {, , };
int ans[], a[];
int exgcd(int a, int b, int &x, int &y) {
if(!b) {
x = , y = ;
return a;
} else {
int tmp = exgcd(b, a%b, y, x);
y -= (a/b)*x;
return tmp;
}
}
void powmod(Matrix x, LL n, Matrix &res, int mod) {
res = E0;
while(n) {
if(n&) maMul(res, x, res, mod);
maMul(x, x, x, mod);
n >>= ;
}
}
int solve() { solver.getFail();
int mul = , res = ; for(int i = ; i < ; i++) mul *= M[i];
for(int i = ; i < ; i++) {
a[i] = mul/M[i];
Matrix tmp1, tmp2;
tmp1 = tmp2 = E0;
LL lv = L%M[i];
for(int k = M[i]; k >= ; k--) {
solver.getMat(k, M[i]);
maMul(tmp1, xx[k], tmp1, M[i]);
if(k <= lv)
maMul(tmp2, xx[k], tmp2, M[i]);
}
powmod(tmp1, L/M[i], tmp1, M[i]);
maMul(tmp2, tmp1, tmp1, M[i]);
ans[i] = ;
for(int k = ; k < sz; k++) {
ans[i] += tmp1.a[k][];
if(ans[i] >= M[i]) ans[i] -= M[i];
}
int xx, yy;
exgcd(a[i], M[i], xx, yy);
res += a[i]*ans[i]%mul*(xx%M[i])%mul;
if(res >= mul)
res -= mul;
}
return (res+mul)%mul;
}
int main() { getPrime();
int kase = ; for(int i = ; i < ; i++) for(int j = ; j < ; j++) E0.a[i][j] = i == j; while(scanf("%d%I64d", &N, &L) == ) {
solver.init();
for(int i = ; i <= N; i++) {
char s[];
scanf("%s", s);
solver.insert(s, i);
}
// printf("%d\n", sz);
printf("Case #%d: %d\n", ++kase, solve());
}
return ;
}

hdu 4878 ZCC loves words AC自动机+中国剩余定理+快速幂的更多相关文章

  1. 【BZOJ】2553: [BeiJing2011]禁忌 AC自动机+期望+矩阵快速幂

    [题意]给定n个禁忌字符串和字符集大小alphabet,保证所有字符在集合内.一个字符串的禁忌伤害定义为分割能匹配到最多的禁忌字符串数量(一个可以匹配多次),求由字符集构成的长度为Len的字符串的期望 ...

  2. 【BZOJ】4861: [Beijing2017]魔法咒语 AC自动机+DP+矩阵快速幂

    [题意]给定n个原串和m个禁忌串,要求用原串集合能拼出的不含禁忌串且长度为L的串的数量.(60%)n,m<=50,L<=100.(40%)原串长度为1或2,L<=10^18. [算法 ...

  3. Luogu-3250 [BJOI2017]魔法咒语(AC自动机,矩阵快速幂)

    Luogu-3250 [BJOI2017]魔法咒语(AC自动机,矩阵快速幂) 题目链接 题解: 多串匹配问题,很容易想到是AC自动机 先构建忌讳词语的AC自动机,构建时顺便记录一下这个点以及它的所有后 ...

  4. [poj2778 DNA Sequence]AC自动机,矩阵快速幂

    题意:给一些字符串的集合S和整数n,求满足 长度为n 只含charset = {'A'.'T‘.'G'.'C'}包含的字符 不包含S中任一字符串 的字符串的种类数. 思路:首先对S建立ac自动机,考虑 ...

  5. BZOJ2553 Beijing2011禁忌(AC自动机+动态规划+矩阵快速幂+概率期望)

    考虑对一个串如何分割能取得最大值.那么这是一个经典的线段覆盖问题,显然每次取右端点尽量靠前的串.于是可以把串放在AC自动机上跑,找到一个合法串后就记录并跳到根. 然后考虑dp.设f[i][j]表示前i ...

  6. BZOJ1951 [Sdoi2010]古代猪文 中国剩余定理 快速幂 数论

    原文链接http://www.cnblogs.com/zhouzhendong/p/8109156.html 题目传送门 - BZOJ1951 题意概括 求 GM mod 999911659 M=∑i ...

  7. HDU 4876 ZCC loves cards(暴力剪枝)

    HDU 4876 ZCC loves cards 题目链接 题意:给定一些卡片,每一个卡片上有数字,如今选k个卡片,绕成一个环,每次能够再这个环上连续选1 - k张卡片,得到他们的异或和的数,给定一个 ...

  8. hdu 4873 ZCC Loves Intersection(大数+概率)

    pid=4873" target="_blank" style="">题目链接:hdu 4873 ZCC Loves Intersection ...

  9. hdu 4876 ZCC loves cards(暴力)

    题目链接:hdu 4876 ZCC loves cards 题目大意:给出n,k,l,表示有n张牌,每张牌有值.选取当中k张排列成圈,然后在该圈上进行游戏,每次选取m(1≤m≤k)张连续的牌,取牌上值 ...

随机推荐

  1. Json-lib - java.util.Date 转换问题

    使用 JSON-lib 将 java.util.Date 对象直接转换成 JSON 字符串时,得到的通常不是想要格式: System.out.println(JSONSerializer.toJSON ...

  2. Hadoop基于Protocol Buffer的RPC实现代码分析-Server端

    http://yanbohappy.sinaapp.com/?p=110 最新版本的Hadoop代码中已经默认了Protocol buffer(以下简称PB,http://code.google.co ...

  3. webform处理过程

    一.post/get传值注意几点 post提交的时候,只有写了name属性且没有写disable=true表单元素(input,select,textarea)才会被提交. 如果不确定是get还是po ...

  4. asp.net 后台弹出提示框

    1.后台弹出提示信息方法 Response.Write("<scripttype="text/javascript">alert('你所查询的数据不存在!') ...

  5. iOS开发,多个button数组,每个数组只能选中5项,多个数组只能选择3个。

    由于常用xib,所以不想用代码写那么多个button.而且也懒的算位置 直接xib拉线成四个数组.水果,零食,饮料,甜点. 入题实现的功能就是,在这四个数组之中只能在3个数组只选中5项.有点绕(就比如 ...

  6. ASP.NET 发送email

    首先添加命名空间 using System.Net.Mail; /// <summary> /// 发送邮件 /// </summary> /// <param name ...

  7. Visualsvn Server的搭建

    最近做项目在用svn,对svn有个初步了解,今天利用一点时间在本地配置了一个svn的服务端.整个过程分为以下几步: ①下载Visualsvn Server并且进行安装. ②安装好以后,在Visuals ...

  8. 初识XML及简单工厂运用--网络电视精灵

    网络电视精灵 任务描述 1. 解析XML文件中的数据 三个简单的xml文件; <?xml version="1.0" encoding="utf-8" ? ...

  9. mui 重写back 调用back方法,实现返回就即时刷新页面

    需求: 从A-----b页面  B操作完后再返回A ,这时A页面数据变化 1.先是针对安卓机可以点击按钮返回,也可以用本机的返回键返回 监听本机的返回按钮,如果点击就调用写好的自定义刷新事件 (fun ...

  10. CSS display:inline和float:left两者区别探讨

     本文和大家重点讨论一下CSS display:inline和float:left两者的区别,CSS display是指显示状态,inline表示内联,特点是紧贴着前一个内联元素,通常默认的内联元素有 ...