2843: 极地旅行社

Time Limit: 10 Sec  Memory Limit: 256 MB
Submit: 90  Solved: 56
[Submit][Status]

Description

不久之前,Mirko建立了一个旅行社,名叫“极地之梦”。这家旅行社在北极附近购买了N座冰岛,并且提供观光服务。当地最受欢迎的当然是帝企鹅了,这些小家伙经常成群结队的游走在各个冰岛之间。
Mirko的旅行社遭受一次重大打击,以至于观光游轮已经不划算了。旅行社将在冰岛之间建造大桥,并用观光巴士来运载游客。Mirko希望开发一个电脑程序来管理这些大桥的建造过程,以免有不可预料的错误发生。
这些冰岛从1到N标号。一开始时这些岛屿没有大桥连接,并且所有岛上的帝企鹅数量都是知道的。每座岛上的企鹅数量虽然会有所改变,但是始终在[0, 1000]之间。
你的程序需要处理以下三种命令:
1."bridge A B"——在A与B之间建立一座大桥(A与B是不同的岛屿)。由于经费限制,这项命令被接受,当且仅当A与B不联通。若这项命令被接受,你的程序需要输出"yes",之后会建造这座大桥。否则,你的程序需要输出"no"。
2."penguins A X"——根据可靠消息,岛屿A此时的帝企鹅数量变为X。这项命令只是用来提供信息的,你的程序不需要回应。
3."excursion A B"——一个旅行团希望从A出发到B。若A与B连通,你的程序需要输出这个旅行团一路上所能看到的帝企鹅数量(包括起点A与终点B),若不联通,你的程序需要输出"impossible"。

Input

第一行一个正整数N,表示冰岛的数量。

第二行N个范围[0, 1000]的整数,为每座岛屿初始的帝企鹅数量。

第三行一个正整数M,表示命令的数量。

接下来M行即命令,为题目描述所示。

Output

对于每个bridge命令与excursion命令,输出一行,为题目描述所示。

Sample Input

5
4 2 4 5 6
10
excursion 1 1
excursion 1 2
bridge 1 2
excursion 1 2
bridge 3 4
bridge 3 5
excursion 4 5
bridge 1 3
excursion 2 4
excursion 2 5

Sample Output

4
impossible
yes
6
yes
yes
15
yes
15
16

HINT

1<=N<=30000

1<=M<=100000

题解:

看到这种只有连边没有删边的总是想写个启发式合并。。。不过既然是练习LCT,就写LCT吧。

代码:

 #include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<string>
#define inf 1000000000
#define maxn 100000+5
#define maxm 500+100
#define eps 1e-10
#define ll long long
#define pa pair<int,int>
#define for0(i,n) for(int i=0;i<=(n);i++)
#define for1(i,n) for(int i=1;i<=(n);i++)
#define for2(i,x,y) for(int i=(x);i<=(y);i++)
#define for3(i,x,y) for(int i=(x);i>=(y);i--)
#define mod 1000000007
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();}
return x*f;
}
int n,m,v[maxn],sum[maxn],c[maxn][],fa[maxn],f[maxn],sta[maxn],top;
bool rev[maxn];
inline int find(int x){return f[x]==x?x:f[x]=find(f[x]);}
inline bool isroot(int x)
{
return c[fa[x]][]!=x&&c[fa[x]][]!=x;
}
inline void pushup(int x)
{
sum[x]=sum[c[x][]]+sum[c[x][]]+v[x];
}
inline void rever(int x)
{
rev[x]^=;swap(c[x][],c[x][]);
}
inline void pushdown(int x)
{
if(!rev[x])return;
rever(c[x][]);rever(c[x][]);
rev[x]=;
}
inline void rotate(int x)
{
int y=fa[x],z=fa[y],l=c[y][]==x,r=l^;
if(!isroot(y))c[z][c[z][]==y]=x;
fa[x]=z;fa[y]=x;fa[c[x][r]]=y;
c[y][l]=c[x][r];c[x][r]=y;
pushup(y);pushup(x);
}
inline void splay(int x)
{
sta[++top]=x;
for(int y=x;!isroot(y);y=fa[y])sta[++top]=fa[y];
for(;top;)pushdown(sta[top--]);
while(!isroot(x))
{
int y=fa[x],z=fa[y];
if(!isroot(y))
{
if(c[z][]==y^c[y][]==x)rotate(x);else rotate(y);
}
rotate(x);
}
}
inline void access(int x)
{
for(int y=;x;x=fa[x])
{
splay(x);c[x][]=y;pushup(x);y=x;
}
}
inline void makeroot(int x)
{
access(x);splay(x);rever(x);
}
inline void link(int x,int y)
{
if(find(x)==find(y)){printf("no\n");return;}
printf("yes\n");
makeroot(x);fa[x]=y;f[find(x)]=find(y);splay(x);
}
inline void split(int x,int y)
{
makeroot(x);access(y);splay(y);
}
int main()
{
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
n=read();
for1(i,n)v[i]=sum[i]=read(),f[i]=i;
m=read();
while(m--)
{
char ch[];
scanf("%s",ch);int x=read(),y=read();
if(ch[]=='b')link(x,y);
else if(ch[]=='p')splay(x),v[x]=y,pushup(x);
else if(find(x)!=find(y))printf("impossible\n");
else split(x,y),printf("%d\n",sum[y]);
}
return ;
}

BZOJ2843: 极地旅行社的更多相关文章

  1. bzoj2843极地旅行社

    bzoj2843极地旅行社 题意: 一些点,每个点有一个权值.有三种操作:点与点连边,单点修改权值,求两点之间路径上点的权值和(需要判输入是否合法) 题解: 以前一直想不通为什么神犇们的模板中LCT在 ...

  2. BZOJ2843 极地旅行社 LCT

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ2843 题意概括 有n座岛 每座岛上的企鹅数量虽然会有所改变,但是始终在[0, 1000]之间.你的 ...

  3. BZOJ2843——极地旅行社

    1.题目大意:动态树问题,点修改,链查询.另外说明双倍经验题=bzoj1180 2.分析:lct模板题,练手的 #include <stack> #include <cstdio&g ...

  4. BZOJ2843极地旅行社&BZOJ1180[CROATIAN2009]OTOCI——LCT

    题目描述 给出n个结点以及每个点初始时对应的权值wi.起始时点与点之间没有连边.有3类操作:  1.bridge A B:询问结点A与结点B是否连通. 如果是则输出“no”.否则输出“yes”,并且在 ...

  5. [BZOJ2843] 极地旅行社(LCT)

    传送门 模板. ——代码 #include <cstdio> #include <iostream> #define N 300001 #define get(x) (son[ ...

  6. bzoj2843极地旅行社题解

    题目大意 有n座小岛,当中每一个岛都有若干帝企鹅. 一開始岛与岛之间互不相连.有m个操作.各自是在两个岛之间修一座双向桥,若两岛已连通则不修并输出no,若不连通就输出yes并修建.改动一个岛上帝企鹅的 ...

  7. [bzoj2843&&bzoj1180]极地旅行社 (lct)

    双倍经验双倍的幸福... 所以另一道是300大洋的世界T_T...虽然题目是一样的,不过2843数据范围小了一点... 都是lct基本操作 #include<cstdio> #includ ...

  8. 【BZOJ2843】极地旅行社(Link-Cut Tree)

    [BZOJ2843]极地旅行社(Link-Cut Tree) 题面 BZOJ 题解 \(LCT\)模板题呀 没什么好说的了.. #include<iostream> #include< ...

  9. 【BZOJ2843】极地旅行社 离线+树链剖分+树状数组

    [BZOJ2843]极地旅行社 Description 不久之前,Mirko建立了一个旅行社,名叫“极地之梦”.这家旅行社在北极附近购买了N座冰岛,并且提供观光服务.当地最受欢迎的当然是帝企鹅了,这些 ...

随机推荐

  1. 封装DB类

    封装DB类     一般一个类单独书写在一个Php文件中,为了见名知意,会对文件名有一个规范:类名.class.php 第1步:     创建DB类 第2 步:     属性设计 第3步:     初 ...

  2. Python快速入门学习笔记(一)

    本篇文章适合有其他高级语言基础的人群阅读 使用的Python版本为python2.7 使用的编辑器为Sublime Text3 世界始于Hello World: print 'Hello world' ...

  3. Thrift原理与使用实例

    一 Thrift框架介绍 1 前言 Thrift是一个跨语言的服务部署框架,最初由Faceboo开发并进入Apache开源项目. Thrift特征如下: 1)Thrift有自己的跨机器通信框架,并提供 ...

  4. TreeSet集合

    TreeSet集合 TreeSet集合是一个依靠TreeMap实现的有序集合,内部存储元素是自动按照自然排序进行排列,所以如果想要保留存储时的顺序,那么就不建议使用TreeSet. TreeSet继承 ...

  5. ExecutorService 接口

    先看一个Executor接口,该接口只有一个方法:void execute(Runnable command),用于在未来某个时刻提交一个command,这个command可以被提交到一个新的线程,或 ...

  6. 用PHP实现单向链表

    供参考,代码还可继续打磨 同时放在了我的github上:https://github.com/hheedat/demo/blob/master/learn_php/58_linked_list.php ...

  7. 设置Tomcat应用自动部署目录

    只需要在Tomcat/conf目录下面新建文件夹Catalina/localhost,然后再localhost文件夹下面新建一个[应用名字.xml]文件即可,有多少个应用就新建多少个xml文件即可,x ...

  8. centos 卸载vsftpd方法

    centos 卸载vsftpd方法 在服务器上安装了vsftpd,配置出错需要卸载vsftpd.卸载vsftpd的命令如下: 1 [root@localhost ~]# rpm -aq vsftpd2 ...

  9. 使用text-overflow:ellipsis对溢出文本显示省略号有两个好处

    使用text-overflow:ellipsis对溢出文本显示省略号有两个好处,一是不用通过程序限定字数:二是有利于SEO.需要使用对对溢出文本显示省略号的通常是文章标题列表,这样处理对搜索引擎更友好 ...

  10. java.util.ArrayList

    /* * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved. * ORACLE PROPRIETA ...