Collecting Bugs
Time Limit: 10000MS   Memory Limit: 64000K
Total Submissions: 1792   Accepted: 832
Case Time Limit: 2000MS   Special Judge

Description

Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other material stuff, he collects software bugs. When Ivan gets a new program, he classifies all possible bugs into n categories. Each day he discovers exactly one bug in the program and adds information about it and its category into a spreadsheet. When he finds bugs in all bug categories, he calls the program disgusting, publishes this spreadsheet on his home page, and forgets completely about the program. 
Two companies, Macrosoft and Microhard are in tight competition. Microhard wants to decrease sales of one Macrosoft program. They hire Ivan to prove that the program in question is disgusting. However, Ivan has a complicated problem. This new program has s subcomponents, and finding bugs of all types in each subcomponent would take too long before the target could be reached. So Ivan and Microhard agreed to use a simpler criteria --- Ivan should find at least one bug in each subsystem and at least one bug of each category. 

Macrosoft knows about these plans and it wants to estimate the time that is required for Ivan to call its program disgusting. It's important because the company releases a new version soon, so it can correct its plans and release it quicker. Nobody would be interested in Ivan's opinion about the reliability of the obsolete version. 

A bug found in the program can be of any category with equal probability. Similarly, the bug can be found in any given subsystem with equal probability. Any particular bug cannot belong to two different categories or happen simultaneously in two different subsystems. The number of bugs in the program is almost infinite, so the probability of finding a new bug of some category in some subsystem does not reduce after finding any number of bugs of that category in that subsystem. 

Find an average time (in days of Ivan's work) required to name the program disgusting.

Input

Input file contains two integer numbers, n and s (0 < n, s <= 1 000).

Output

Output the expectation of the Ivan's working days needed to call the program disgusting, accurate to 4 digits after the decimal point.

Sample Input

1 2

Sample Output

3.0000

Source

Northeastern Europe 2004, Northern Subregion
这个讲解就copy一下啦,讲的很好
  1. dp求期望的题。
  2. 题意:一个软件有s个子系统,会产生n种bug(bug没有相同的)。
  3. 某人一天发现一个bug,这个bug属于某种bug,发生在某个子系统中。
  4. 求找到所有的n种bug,且每个子系统都找到bug,这样所要的天数的期望。
  5. 需要注意的是:bug的数量是无穷大的,所以发现一个bug,出现在某个子系统的概率是1/s,
  6. 属于某种类型的概率是1/n。
  7. 解法:
  8. dp[i][j]表示已经找到i种bug,并存在于j个子系统中,离要达到目标状态的天数的期望。
  9. 显然,dp[n][s]=0,因为已经达到目标了。而dp[0][0]就是我们要求的答案。
  10. dp[i][j]状态可以转化成以下四种:
  11. dp[i][j]    发现一个bug属于已经找到的i种bug和j个子系统中//
  12. dp[i+1][j]  发现一个bug属于新的一种bug,但属于已经找到的j种子系统
  13. dp[i][j+1]  发现一个bug属于已经找到的i种bug,但属于新的子系统
  14. dp[i+1][j+1]发现一个bug属于新的一种bug和新的一个子系统
  15. 以上四种的概率分别为:
  16. p1 =     i*j / (n*s)
  17. p2 = (n-i)*j / (n*s)
  18. p3 = i*(s-j) / (n*s)
  19. p4 = (n-i)*(s-j) / (n*s)
  20. 又有:期望可以分解成多个子期望的加权和,权为子期望发生的概率,即 E(aA+bB+...) = aE(A) + bE(B) +...
  21. 所以:
  22. dp[i,j] = p1*dp[i,j] + p2*dp[i+1,j] + p3*dp[i,j+1] + p4*dp[i+1,j+1] + 1;
  23. 整理得: (注意这里是求解了的 把dp[i][j]放到一边)
  24. dp[i,j] = ( 1 + p2*dp[i+1,j] + p3*dp[i,j+1] + p4*dp[i+1,j+1] )/( 1-p1 )
  25. = ( n*s + (n-i)*j*dp[i+1,j] + i*(s-j)*dp[i,j+1] + (n-i)*(s-j)*dp[i+1,j+1] )/( n*s - i*j )

#include<stdio.h>
#include<iostream>
using namespace std; double dp[1009][1009];//dp[i][j] i种bug存在于j个子系统中
int main()
{
int i,j,n,m,s;
while(scanf("%d%d",&n,&s)!=EOF)
{
memset(dp,0,sizeof(dp));
dp[n][s]=0;
for(i=n;i>=0;i--)
{
for(j=s;j>=0;j--)
{
if(i==n&&j==s)
continue;
dp[i][j]=(n*s+dp[i][j]*(i*j)+dp[i+1][j]*(n-i)*j+dp[i][j+1]*i*(s-j)+dp[i+1][j+1]*(n-i)*(s-j))/(n*s-i*j);
}
}
printf("%.4f\n",dp[0][0]);
}
return 0;
}


poj2096 Collecting Bugs(概率dp)的更多相关文章

  1. POJ2096 Collecting Bugs(概率DP,求期望)

    Collecting Bugs Ivan is fond of collecting. Unlike other people who collect post stamps, coins or ot ...

  2. [POJ2096] Collecting Bugs (概率dp)

    题目链接:http://poj.org/problem?id=2096 题目大意:有n种bug,有s个子系统.每天能够发现一个bug,属于一个种类并且属于一个子系统.问你每一种bug和每一个子系统都发 ...

  3. poj 2096 Collecting Bugs (概率dp 天数期望)

    题目链接 题意: 一个人受雇于某公司要找出某个软件的bugs和subcomponents,这个软件一共有n个bugs和s个subcomponents,每次他都能同时随机发现1个bug和1个subcom ...

  4. poj2096 Collecting Bugs[期望dp]

    Collecting Bugs Time Limit: 10000MS   Memory Limit: 64000K Total Submissions: 5394   Accepted: 2670 ...

  5. poj 2096 Collecting Bugs 概率dp 入门经典 难度:1

    Collecting Bugs Time Limit: 10000MS   Memory Limit: 64000K Total Submissions: 2745   Accepted: 1345 ...

  6. Collecting Bugs (概率dp)

    Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other material stu ...

  7. POJ 2096 Collecting Bugs (概率DP,求期望)

    Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other material stu ...

  8. Poj 2096 Collecting Bugs (概率DP求期望)

    C - Collecting Bugs Time Limit:10000MS     Memory Limit:64000KB     64bit IO Format:%I64d & %I64 ...

  9. POJ 2096 Collecting Bugs (概率DP)

    题意:给定 n 类bug,和 s 个子系统,每天可以找出一个bug,求找出 n 类型的bug,并且 s 个都至少有一个的期望是多少. 析:应该是一个很简单的概率DP,dp[i][j] 表示已经从 j ...

随机推荐

  1. 删除重复记录的SQL语句

    1.所有字段均重复的记录(重复记录保留一条) Select distinct * into #Tmp from tblName Drop table tblName Select * into tbl ...

  2. 关于margin-top失效的解决方法

    常出现两种情况:(一)margin-top失效 先看下面代码: <div><div class="box1" >float:left</div> ...

  3. Hibernate 性能优化之抓取策略

    fetch 抓取策略 前提条件:必须是一个对象操作其关联对象. 1. 根据一的一方加载多的一方,在一的一方集合中,有三个值:join/select/subselect 2.根据多的一方加载一的一方, ...

  4. Linux下的Job Control(转:http://blog.chinaunix.net/uid-26495963-id-3062757.html)

    一.Job的概念 Job是指在批处理的环境中,为完成某一任务而进行一系列操作的总称.在个人接触计算机的年代,批处理的环境已经不容见到了,只有一些特殊的行业和环境下还在使用这样的概念,仅在书本中接触过. ...

  5. dede 留言板访问的目录

    D:\APMServ5.2.6\www\htdocs\xyhy\templets\plus guestbook.rar   文件 里面  DEDE留言簿的插件:

  6. jquery 选项卡实现

    HTML文件 $(function(){ var $div_li =$("div.tab_menu ul li"); $div_li.click(function(){ $(thi ...

  7. 周赛F题 POJ 1458(最长公共子序列)

    F - F Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u   Description ...

  8. 转:微博"收藏/赞/转发"技术资料汇总

    书籍 HTTP权威指南 <- @Fenng Introduction to Information Retrieval <- @陈利人 Lua 源码欣赏 <- @简悦云风 The A ...

  9. 软硬大比拼 硅胶、TPU和PC材质对比

    手机保护壳的材质有很多种,目前保护壳市场上最为常见的就是硅胶.TPU.PC材质了.那么我们不禁要问,PU.硅胶.PC三材质到底有哪些区别呢?普通消费者在购买保护壳的时候能否从外表就能看出保护壳材质?P ...

  10. UVA11388 GCD LCM(数论)

    题目链接. 题意: 给定两个数,一个G,一个L,找出两个数a,b(a<=b),使得这两个数的最大公约数为G,最小公倍数为L,且(a最小). 分析: 当a,b存在时,a一定为G. 自己证了一下,数 ...