题意:有n个点,部分点之间可以连接无向边,每条可以连接的边都有一个权值。求一种连接方法将这些点连接成一个连通图,且所有连接了的边中权值最大的边权值最小。

解法:水题,直接用Kruskal算法做一遍就行了,不过还是应该仔细想想为什么Kruskal可行。原因是,在从小边往大边遍历的过程中(一直保持图为连通图),若判定某边i必须被连接,则因为图是连通图,所以连接比它小的边不可能使边i不需要连接,所以,要使边i不需要连接,必须连接比它大的边,根据题目要求,还是连接边i情况更优。

tag:最小生成树

 /*
* Author: Plumrain
* Created Time: 2013-11-24 20:57
* File Name: G-POJ-1861.cpp
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector> using namespace std; #define CLR(x) memset(x, 0, sizeof(x))
#define PB push_back
const int maxm = * ;
const int maxn = ; struct pat{
int s, t, l;
}; pat p[maxm];
bool v[maxm];
vector<int> ans;
int n, m, all, f[maxn]; bool cmp(pat a, pat b)
{
return a.l < b.l;
} void init()
{
int t1, t2, t3;
all = ;
for (int i = ; i < m; ++ i){
scanf ("%d%d%d", &t1, &t2, &t3);
-- t1; -- t2;
p[all].s = p[all+].t = t1;
p[all].t = p[all+].s = t2;
p[all++].l = t3;
p[all++].l = t3;
}
} void Kruskal()
{
sort(p, p+all, cmp);
for (int i = ; i < n; ++ i) f[i] = i;
CLR (v);
for (int i = ; i < all; ++ i){
int t1 = p[i].s, t2 = p[i].t;
while (t1 != f[t1]) t1 = f[t1];
while (t2 != f[t2]) t2 = f[t2];
if (t1 != t2){
v[i] = ;
f[t1] = t2;
}
}
} int main()
{
while (scanf ("%d%d", &n, &m) != EOF){
init();
Kruskal(); ans.clear();
int cnt = ;
for (int i = ; i < all; ++ i) if (v[i]){
cnt = max(i, cnt);
ans.PB(i);
}
int sz = ans.size();
printf ("%d\n%d\n", p[cnt].l, sz);
for (int i = ; i < sz; ++ i)
printf ("%d %d\n", p[ans[i]].s+, p[ans[i]].t+);
}
return ;
}

POJ 1861 Network的更多相关文章

  1. ZOJ 1542 POJ 1861 Network 网络 最小生成树,求最长边,Kruskal算法

    题目连接:problemId=542" target="_blank">ZOJ 1542 POJ 1861 Network 网络 Network Time Limi ...

  2. POJ 1861 Network (Kruskal求MST模板题)

    Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 14103   Accepted: 5528   Specia ...

  3. POJ 1861 Network (Kruskal算法+输出的最小生成树里最长的边==最后加入生成树的边权 *【模板】)

    Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 14021   Accepted: 5484   Specia ...

  4. POJ 1861 Network (模版kruskal算法)

    Network Time Limit: 1000MS Memory Limit: 30000K Total Submissions: Accepted: Special Judge Descripti ...

  5. POJ 1861 ——Network——————【最小瓶颈生成树】

    Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 15268   Accepted: 5987   Specia ...

  6. POJ 1861 Network (MST)

    题意:求解最小生成树,以及最小瓶颈生成树上的瓶颈边. 思路:只是求最小生成树即可.瓶颈边就是生成树上权值最大的那条边. //#include <bits/stdc++.h> #includ ...

  7. POJ 1236 Network of Schools(强连通 Tarjan+缩点)

    POJ 1236 Network of Schools(强连通 Tarjan+缩点) ACM 题目地址:POJ 1236 题意:  给定一张有向图,问最少选择几个点能遍历全图,以及最少加入�几条边使得 ...

  8. POJ 1236 Network of Schools(强连通分量)

    POJ 1236 Network of Schools 题目链接 题意:题意本质上就是,给定一个有向图,问两个问题 1.从哪几个顶点出发,能走全全部点 2.最少连几条边,使得图强连通 思路: #inc ...

  9. poj 3417 Network(tarjan lca)

    poj 3417 Network(tarjan lca) 先给出一棵无根树,然后下面再给出m条边,把这m条边连上,然后每次你能毁掉两条边,规定一条是树边,一条是新边,问有多少种方案能使树断裂. 我们设 ...

随机推荐

  1. Android之如何混淆代码和相关配置

    昨天,客户想看一下目前项目开发到什么程度了,于是需要将项目签名打包成apk,结果打包的时候出错了,吃惊,什么情况.等成功打包以后,安装起来发现部分功能又报错了,囧,所幸最后还是解决了.在这里记录一下遇 ...

  2. 使用EMMET中的小坑

    使用EMMET写HTML的时候,是一个非常爽的事情.但是今天我使用时,发现一个小坑.以前倒也没有注意,不过需要非常的小心. form[action="/process" metho ...

  3. TOM大师脚本01-查找未建索引的外键

    [oracle@Oracle11g 2016]$ cat 022201.sql column columns format a30 word_wrappedcolumn tablename forma ...

  4. 序列数据挖掘[ZZ]

    一.时间序列数据挖掘 时间序列是数据存在的特殊形式,序列的过去值会影响到将来值,这种影响的大小以及影响的方式可由时间序列中的趋势周期及非平稳等行为来刻画.一般来讲,时间序列数据都具有躁声.不稳定.随机 ...

  5. hdu2962 Trucking (最短路+二分查找)

    Problem Description A certain local trucking company would like to transport some goods on a cargo t ...

  6. js prototype __proto__ instanceof constructor

    JS中有两个特殊的对象:Object与Function,它们都是构造函数,用于生成对象. Object.prototype是所有对象的祖先,Function.prototype是所有函数的原型,包括构 ...

  7. js对象的复制,传递,新增,删除和比较

    当我们把一个某个对象拷贝或者传递给某个函数时,往往传递的是该对象的引用. 因此我们在引用上做的任何改动,都将会影响到它所引用的原对象.  复制,拷贝  var o = { add: 'Changdao ...

  8. 解决Collection was modified; enumeration operation may not execute异常

    今天在使用foreach循环遍历list集合时,出现Collection was modified; enumeration operation may not execute.这个错误,查了半天才发 ...

  9. C#/.NET整数的三种强制类型转换(int)、Convert.ToInt32()、int.Parse()的区别

    这三种方式都是强制把内容转换为整数,但他们之间是有区别的,如下: 一.(int)适合简单数据类型之间的转换,C#的默认整型是int32(不支持bool型). 二.int.Parse(string sP ...

  10. mysql数据类型——枚举enum(‘F’,'M')

    ENUM(“value1”,“value2”,...) 说明:枚举,列值可赋予值列表中的某个成员 允许的属性:除通用属性外无其他属性 缺省值:如果列可为NULL,则为NULL:如果列为NOTNULL, ...