题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2142

没给P的范围,但说 pi ^ ci<=1e5,一看就是扩展lucas。

学习材料:https://blog.csdn.net/clove_unique/article/details/54571216

     https://www.cnblogs.com/elpsycongroo/p/7620197.html

于是打(抄)了第一份exlucas的板子。那个把 pi的倍数 和 其余部分 分开处理的写法非常清楚!自己本来还想弄个pair的函数什么的。

num的范围?

#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
using namespace std;
const int N=;
int num,m[N],pk[N];
ll mod,w[],a[N],x,y,ans,n,l;
void init(ll n)
{
for(ll i=;i*i<=n;i++)
if(n%i==)
{
m[++num]=i;pk[num]=;
while(n%i==)n/=i,pk[num]*=i;
}
if(n>)m[++num]=n,pk[num]=n;
}
ll pw(ll x,ll k,int mod)
{
ll ret=;x%=mod;while(k){if(k&)(ret*=x)%=mod;(x*=x)%=mod;k>>=;}return ret;
}
ll multi(ll n,int pi,int pk)
{
if(!n)return ;//
ll sum=;
for(int i=;i<pk;i++)if(i%pi)(sum*=i)%=pk;
sum=pw(sum,n/pk,pk);
for(int i=;i<=n%pk;i++)if(i%pi)(sum*=i)%=pk;
return sum*multi(n/pi,pi,pk)%pk;//n/pi!!
}
void exgcd(ll a,ll b,ll &x,ll &y)
{
if(!b){x=;y=;return;}
exgcd(b,a%b,y,x);y-=a/b*x;
}
ll inv(ll n,ll mod){exgcd(n,mod,x,y);return (x+mod)%mod;}
ll exlucas(ll n,ll m,int pi,int pk)
{
if(n<m)return ;//
ll a=multi(n,pi,pk),b=multi(m,pi,pk),c=multi(n-m,pi,pk);
ll k=;
for(ll i=n;i;i/=pi)k+=i/pi;//阶乘的pi的个数
for(ll i=m;i;i/=pi)k-=i/pi;
for(ll i=n-m;i;i/=pi)k-=i/pi;
return a*inv(b,pk)%pk*inv(c,pk)%pk*pw(pi,k,pk)%pk;
}
ll crt()
{
ll M=,ret=;for(int i=;i<=num;i++)M*=pk[i];//pk,not m(pi)
for(int i=;i<=num;i++)
{
ll w=M/pk[i];
(ret+=w*inv(w,pk[i])*a[i])%=mod;
}
return (ret+mod)%mod;
}
ll excomb(ll n,ll k)
{
for(int i=;i<=num;i++)
a[i]=exlucas(n,k,m[i],pk[i]);
return crt();
}
int main()
{
scanf("%lld%lld%lld",&mod,&n,&l);ll tmp=;
init(mod);
for(int i=;i<=l;i++)scanf("%lld",&w[i]),tmp+=w[i];
if(n<tmp){printf("Impossible");return ;}
ans=;
for(int i=;i<=l;i++)
{
tmp=excomb(n,w[i]);
(ans*=tmp)%=mod;n-=w[i];
}
printf("%lld\n",ans);
return ;
}

bzoj 2142 礼物——扩展lucas模板的更多相关文章

  1. BZOJ - 2142 礼物 (扩展Lucas定理)

    扩展Lucas定理模板题(貌似这玩意也只能出模板题了吧~~本菜鸡见识鄙薄,有待指正) 原理: https://blog.csdn.net/hqddm1253679098/article/details ...

  2. BZOJ.2142.礼物(扩展Lucas)

    题目链接 答案就是C(n,m1) * C(n-m1,m2) * C(n-m1-m2,m3)...(mod p) 使用扩展Lucas求解. 一个很简单的优化就是把pi,pi^ki次方存下来,因为每次分解 ...

  3. BZOJ 2142: 礼物 [Lucas定理]

    2142: 礼物 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1294  Solved: 534[Submit][Status][Discuss] ...

  4. 【刷题】BZOJ 2142 礼物

    Description 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多.小E从商店 ...

  5. [BZOJ2142]礼物(扩展Lucas)

    2142: 礼物 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2286  Solved: 1009[Submit][Status][Discuss] ...

  6. BZOJ 2142 礼物 组合数学 CRT 中国剩余定理

    2142: 礼物 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1450  Solved: 593[Submit][Status][Discuss] ...

  7. [bzoj2142]礼物(扩展lucas定理+中国剩余定理)

    题意:n件礼物,送给m个人,每人的礼物数确定,求方案数. 解题关键:由于模数不是质数,所以由唯一分解定理, $\bmod  = p_1^{{k_1}}p_2^{{k_2}}......p_s^{{k_ ...

  8. GYM100633J. Ceizenpok’s formula 扩展lucas模板

    J. Ceizenpok’s formula time limit per test 2.0 s memory limit per test 256 MB input standard input o ...

  9. BZOJ2142 礼物 扩展lucas 快速幂 数论

    原文链接http://www.cnblogs.com/zhouzhendong/p/8110015.html 题目传送门 - BZOJ2142 题意概括 小E购买了n件礼物,送给m个人,送给第i个人礼 ...

随机推荐

  1. Apache的order、allow、deny

    Allow和Deny可以用于apache的conf文件或者.htaccess文件中(配合Directory, Location, Files等),用来控制目录和文件的访问授权. 所以,最常用的是:Or ...

  2. 谷歌浏览器安装jsonview插件方法

    参考https://www.cnblogs.com/whycxb/p/7126116.html,已安装成功.

  3. iOS_多线程(二)

    上篇中我们分享了NSThread.NSOperation&NSOperationQueue如何实现多线程,今天我们来看下第三种实现多线程的方式:GCD(Grand Central Dispat ...

  4. Python 循环语句(while, for)

    # while的使用 # 要注意些循环的时候,要考虑好循环的结束 # 考虑循环结束的方法有2种: # 1.考虑在循环体里改变while 的条件 # 2.在循环体通过break 语句跳出循环 # 方法1 ...

  5. Threalocal的使用及其原理

    虽然现在可以说很多程序员会用ThreadLocal,但是我相信大多数程序员还不知道ThreadLocal,而使用ThreadLocal的程序员大多只是知道其然而不知其所以然,因此,使用ThreadLo ...

  6. One 的使用(1)

    方法一:使用命令提示符 第一步:打开d盘  C:Users\dcf>d; 第二步:打开工作空间  D:\>Cd workspace 第三步:打开the one  D:\workspace& ...

  7. utf-8,Unicode和ASCII区别

    一.ASCII 码 我们知道,计算机内部,所有信息最终都是一个二进制值.每一个二进制位(bit)有0和1两种状态,因此八个二进制位就可以组合出256种状态,这被称为一个字节(byte).也就是说,一个 ...

  8. 通过代码或者配置文件 对log4net进行配置

    1.通过代码进行配置 1.1代码 http://stackoverflow.com/questions/16336917/can-you-configure-log4net-in-code-inste ...

  9. 求两个有序序列合并成新有序序列的中位数,求第k小数

    此算法涉及一个重要数学结论:如果A[k/2-1]<B[k/2-1],那么A[0]~A[k/2-1]一定在第k小的数的序列当中,可以用反证法证明. 算法思想如下: 1,假设A长度为m,B长度为n, ...

  10. vue组件 Prop传递数据

    组件实例的作用域是孤立的.这意味着不能(也不应该)在子组件的模板内直接引用父组件的数据.要让子组件使用父组件的数据,我们需要通过子组件的props选项. prop 是单向绑定的:当父组件的属性变化时, ...