3529: [Sdoi2014]数表

Time Limit: 10 Sec Memory Limit: 512 MB

Submit: 2151 Solved: 1080

[Submit][Status][Discuss]

Description

有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为

能同时整除i和j的所有自然数之和。给定a,计算数表中不大于a的数之和。

Input

输入包含多组数据。
输入的第一行一个整数Q表示测试点内的数据组数,接下来Q行,每行三个整数n,m,a(|a| < =10^9)描述一组数据。

Output

对每组数据,输出一行一个整数,表示答案模2^31的值。

Sample Input

2

4 4 3

10 10 5

Sample Output

20

148

HINT

1 < =N.m < =10^5 , 1 < =Q < =2×10^4

题解

一道比较恶心的题

我们要求的就是ans=∑Ni=1∑Mj=1g(gcd(i,j)),其中g(i)指i的约束和

利用莫比乌斯反演化简得:

ans=∑NT=1⌊NT⌋⌊MT⌋∗∑i|Tμ(Ti)g(i)

然后很常规:

前面部分分块

后面部分维护T的前缀和

维护g(i)的方式:枚举自然数i和i的倍数T,将i的倍数T对应的g(T)加上μ(Ti)g(i)

预处理复杂度O(nlogn)

但是题目要求我们求<=a的g(i),我们就将i按照g(i)排序,将询问按照a排序,每次询问前先将前缀和更新到不大于a,此时用树状数组维护前缀和

小技巧:对231取模,可以自然溢出,输出时&上231−1【化为正数】

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u]; k != -1; k = ed[k].nxt)
#define lbt(x) (x & -x)
using namespace std;
const int maxn = 100005,maxm = 20005,INF = 1000000000;
inline int RD(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 1) + (out << 3) + c - '0'; c = getchar();}
return out * flag;
}
int N = 0;
int A[maxn],now = 0,mu[maxn],prime[maxn],primei = 0,Qi,Ans[maxm];
bool isn[maxn];
struct Que{int n,m,a,id;}Q[maxm];
struct Gf{int i,v;}G[maxn];
inline bool operator <(const Que& a,const Que& b){return a.a < b.a;}
inline bool operator <(const Gf& a,const Gf& b){return a.v < b.v;}
inline void add(int u,int v){while (u <= N) A[u] += v,u += lbt(u);}
inline int query(int u){int ans = 0; while (u) ans += A[u],u -= lbt(u); return ans;}
void init(){
mu[1] = 1;
for (int i = 2; i <= N; i++){
if (!isn[i]) prime[++primei] = i,mu[i] = -1;
for (int j = 1; j <= primei && i * prime[j] <= N; j++){
isn[i * prime[j]] = true;
if (i % prime[j] == 0) {mu[i * prime[j]] = 0; break;}
mu[i * prime[j]] = -mu[i];
}
}
for (int i = 1; i <= N; i++)
for (int j = i; j <= N; j += i)
G[j].v += i;
REP(i,N) G[i].i = i;
sort(G + 1,G + 1 + N);
}
int main(){
Qi = RD();
REP(i,Qi) Q[i].n = RD(),Q[i].m = RD(),Q[i].a = RD(),Q[i].id = i,N = max(N,max(Q[i].n,Q[i].m));
sort(Q + 1,Q + 1 + Qi);
init();
REP(i,Qi){
while (now < N && G[now + 1].v <= Q[i].a){
now++;
for (int j = 1; G[now].i * j <= N; j++)
add(G[now].i * j,mu[j] * G[now].v);
}
int n = Q[i].n,m = Q[i].m; if (n > m) swap(n,m);
for (int j = 1,nxt; j <= n; j = nxt + 1){
nxt = min(n / (n / j),m / (m / j));
Ans[Q[i].id] += (n / j) * (m / j) * (query(nxt) - query(j - 1));
}
}
REP(i,Qi) printf("%d\n",Ans[i] & 0x7fffffff);
return 0;
}

BZOJ3529 [Sdoi2014]数表 【莫比乌斯反演】的更多相关文章

  1. bzoj3529: [Sdoi2014]数表 莫比乌斯反演

    题意:求\(\sum_{i=1}^n\sum_{j=1}^nf(gcd(i,j))(gcd(i,j)<=a),f(x)是x的因子和函数\) 先考虑没有限制的情况,考虑枚举gcd为x,那么有\(\ ...

  2. BZOJ3529: [Sdoi2014]数表(莫比乌斯反演,离线)

    Description 有一张 n×m 的数表,其第 i 行第 j 列(1 <= i <= n, 1 <= j <= m)的数值为 能同时整除 i 和 j 的所有自然数之和.给 ...

  3. BZOJ3529: [Sdoi2014]数表(莫比乌斯反演 树状数组)

    题意 题目链接 Sol 首先不考虑\(a\)的限制 我们要求的是 \[\sum_{i = 1}^n \sum_{j = 1}^m \sigma(gcd(i, j))\] 用常规的套路可以化到这个形式 ...

  4. BZOJ3529: [Sdoi2014]数表 莫比乌斯反演_树状数组

    Code: #include <cstdio> #include <algorithm> #include <cstring> #define ll long lo ...

  5. bzoj [SDOI2014]数表 莫比乌斯反演 BIT

    bzoj [SDOI2014]数表 莫比乌斯反演 BIT 链接 bzoj luogu loj 思路 \[ \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}a*[f[ ...

  6. 【BZOJ3529】[Sdoi2014]数表 莫比乌斯反演+树状数组

    [BZOJ3529][Sdoi2014]数表 Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和 ...

  7. 【bzoj3529】[Sdoi2014]数表 莫比乌斯反演+离线+树状数组

    题目描述 有一张n×m的数表,其第i行第j列(1 <= i <= n ,1 <= j <= m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a的数之和. ...

  8. BZOJ 3259 [Sdoi2014]数表 (莫比乌斯反演 + 树状数组)

    3529: [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 2321  Solved: 1187[Submit][Status ...

  9. BZOJ 3529: [Sdoi2014]数表 [莫比乌斯反演 树状数组]

    3529: [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1399  Solved: 694[Submit][Status] ...

  10. BZOJ 3529 [Sdoi2014]数表 (莫比乌斯反演+树状数组+离线)

    题目大意:有一张$n*m$的数表,第$i$行第$j$列的数是同时能整除$i,j$的所有数之和,求数表内所有不大于A的数之和 先是看错题了...接着看对题了发现不会做了...刚了大半个下午无果 看了Po ...

随机推荐

  1. pyqt5通过qt designer 设计方式连接多个UI图形界面

    当我们通过pyqt开发时,eric6为我们提供了一个方便的工具:图形化的绘制UI工具--qtdesigner.我们可以通过它开发多个UI,然后利用信号-槽工具,将功能代码附着在上面.也可以将多个界面连 ...

  2. 双击 ajax修改单元格里的值

    最终效果 列表页面表格里双击排序修改其值 按钮样式要引入bootstrap才可以用 本文件用的是laravel框架环境 larave路由里 Route::get('category/changesta ...

  3. Horner规则求多项式

    /* Horner */ /*多项式:A(x)=a[n]X^n+a[n-1]x^n-1+...+a[1]X^1+a[0]X^0*/ #include <stdio.h> long int ...

  4. Failed to read candidate component class错误分析

    org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate component c ...

  5. Kubernetes-ELK

    ElasticSearch日志搜集查询和展现案例 容器中输出到控制台的日志都会以*-json.log的命名方式存储在/var/lib/container目录之下: Kubernetes采用Fluent ...

  6. (数据科学学习手札18)二次判别分析的原理简介&Python与R实现

    上一篇我们介绍了Fisher线性判别分析的原理及实现,而在判别分析中还有一个很重要的分支叫做二次判别,本文就对二次判别进行介绍: 二次判别属于距离判别法中的内容,以两总体距离判别法为例,对总体G1,, ...

  7. css在线sprite

    大家知道网站图片多,浏览器下载多个图片要有多个请求.可是请求比较耗时,那怎么办呢? 对,方法就是css sprite. 今天我们来看看css在线sprite 百度搜索css-sprite 打开www. ...

  8. js分类多选全选

    效果如图: HTML代码: <div class="form-group quanxian-wrap"> <label>项目</label> & ...

  9. JDBC 的使用

    使用 MariaDB,JDBC 所有操作全部使用预处理 SQL 的基本类型与 Java 类型的对应关系 CHAR(N) - String VARCHAR(N) - String BOOLEN - bo ...

  10. 实用脚本 1 -- 安装Ctags

    Ctags是vim下方便代码阅读的工具,一般VIM中已经默认安装了Ctags,它可以帮助程序员很容易地浏览源代码. 1.如果系统中没有此工具用如下方法安装:    到ctags官网下载源码,解压后   ...