3529: [Sdoi2014]数表

Time Limit: 10 Sec Memory Limit: 512 MB

Submit: 2151 Solved: 1080

[Submit][Status][Discuss]

Description

有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为

能同时整除i和j的所有自然数之和。给定a,计算数表中不大于a的数之和。

Input

输入包含多组数据。
输入的第一行一个整数Q表示测试点内的数据组数,接下来Q行,每行三个整数n,m,a(|a| < =10^9)描述一组数据。

Output

对每组数据,输出一行一个整数,表示答案模2^31的值。

Sample Input

2

4 4 3

10 10 5

Sample Output

20

148

HINT

1 < =N.m < =10^5 , 1 < =Q < =2×10^4

题解

一道比较恶心的题

我们要求的就是ans=∑Ni=1∑Mj=1g(gcd(i,j)),其中g(i)指i的约束和

利用莫比乌斯反演化简得:

ans=∑NT=1⌊NT⌋⌊MT⌋∗∑i|Tμ(Ti)g(i)

然后很常规:

前面部分分块

后面部分维护T的前缀和

维护g(i)的方式:枚举自然数i和i的倍数T,将i的倍数T对应的g(T)加上μ(Ti)g(i)

预处理复杂度O(nlogn)

但是题目要求我们求<=a的g(i),我们就将i按照g(i)排序,将询问按照a排序,每次询问前先将前缀和更新到不大于a,此时用树状数组维护前缀和

小技巧:对231取模,可以自然溢出,输出时&上231−1【化为正数】

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u]; k != -1; k = ed[k].nxt)
#define lbt(x) (x & -x)
using namespace std;
const int maxn = 100005,maxm = 20005,INF = 1000000000;
inline int RD(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 1) + (out << 3) + c - '0'; c = getchar();}
return out * flag;
}
int N = 0;
int A[maxn],now = 0,mu[maxn],prime[maxn],primei = 0,Qi,Ans[maxm];
bool isn[maxn];
struct Que{int n,m,a,id;}Q[maxm];
struct Gf{int i,v;}G[maxn];
inline bool operator <(const Que& a,const Que& b){return a.a < b.a;}
inline bool operator <(const Gf& a,const Gf& b){return a.v < b.v;}
inline void add(int u,int v){while (u <= N) A[u] += v,u += lbt(u);}
inline int query(int u){int ans = 0; while (u) ans += A[u],u -= lbt(u); return ans;}
void init(){
mu[1] = 1;
for (int i = 2; i <= N; i++){
if (!isn[i]) prime[++primei] = i,mu[i] = -1;
for (int j = 1; j <= primei && i * prime[j] <= N; j++){
isn[i * prime[j]] = true;
if (i % prime[j] == 0) {mu[i * prime[j]] = 0; break;}
mu[i * prime[j]] = -mu[i];
}
}
for (int i = 1; i <= N; i++)
for (int j = i; j <= N; j += i)
G[j].v += i;
REP(i,N) G[i].i = i;
sort(G + 1,G + 1 + N);
}
int main(){
Qi = RD();
REP(i,Qi) Q[i].n = RD(),Q[i].m = RD(),Q[i].a = RD(),Q[i].id = i,N = max(N,max(Q[i].n,Q[i].m));
sort(Q + 1,Q + 1 + Qi);
init();
REP(i,Qi){
while (now < N && G[now + 1].v <= Q[i].a){
now++;
for (int j = 1; G[now].i * j <= N; j++)
add(G[now].i * j,mu[j] * G[now].v);
}
int n = Q[i].n,m = Q[i].m; if (n > m) swap(n,m);
for (int j = 1,nxt; j <= n; j = nxt + 1){
nxt = min(n / (n / j),m / (m / j));
Ans[Q[i].id] += (n / j) * (m / j) * (query(nxt) - query(j - 1));
}
}
REP(i,Qi) printf("%d\n",Ans[i] & 0x7fffffff);
return 0;
}

BZOJ3529 [Sdoi2014]数表 【莫比乌斯反演】的更多相关文章

  1. bzoj3529: [Sdoi2014]数表 莫比乌斯反演

    题意:求\(\sum_{i=1}^n\sum_{j=1}^nf(gcd(i,j))(gcd(i,j)<=a),f(x)是x的因子和函数\) 先考虑没有限制的情况,考虑枚举gcd为x,那么有\(\ ...

  2. BZOJ3529: [Sdoi2014]数表(莫比乌斯反演,离线)

    Description 有一张 n×m 的数表,其第 i 行第 j 列(1 <= i <= n, 1 <= j <= m)的数值为 能同时整除 i 和 j 的所有自然数之和.给 ...

  3. BZOJ3529: [Sdoi2014]数表(莫比乌斯反演 树状数组)

    题意 题目链接 Sol 首先不考虑\(a\)的限制 我们要求的是 \[\sum_{i = 1}^n \sum_{j = 1}^m \sigma(gcd(i, j))\] 用常规的套路可以化到这个形式 ...

  4. BZOJ3529: [Sdoi2014]数表 莫比乌斯反演_树状数组

    Code: #include <cstdio> #include <algorithm> #include <cstring> #define ll long lo ...

  5. bzoj [SDOI2014]数表 莫比乌斯反演 BIT

    bzoj [SDOI2014]数表 莫比乌斯反演 BIT 链接 bzoj luogu loj 思路 \[ \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}a*[f[ ...

  6. 【BZOJ3529】[Sdoi2014]数表 莫比乌斯反演+树状数组

    [BZOJ3529][Sdoi2014]数表 Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和 ...

  7. 【bzoj3529】[Sdoi2014]数表 莫比乌斯反演+离线+树状数组

    题目描述 有一张n×m的数表,其第i行第j列(1 <= i <= n ,1 <= j <= m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a的数之和. ...

  8. BZOJ 3259 [Sdoi2014]数表 (莫比乌斯反演 + 树状数组)

    3529: [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 2321  Solved: 1187[Submit][Status ...

  9. BZOJ 3529: [Sdoi2014]数表 [莫比乌斯反演 树状数组]

    3529: [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1399  Solved: 694[Submit][Status] ...

  10. BZOJ 3529 [Sdoi2014]数表 (莫比乌斯反演+树状数组+离线)

    题目大意:有一张$n*m$的数表,第$i$行第$j$列的数是同时能整除$i,j$的所有数之和,求数表内所有不大于A的数之和 先是看错题了...接着看对题了发现不会做了...刚了大半个下午无果 看了Po ...

随机推荐

  1. mysql 常用函数,基本使用

    1:选中排除表1 连接表2 表3 获取选中表1中部分选中表3 的部分 并且设置选中状态select t1.*,if(t2中t3id=t1.id,1,0)as checked from t1 lefet ...

  2. python-生成器单线程并发(简单案例)

    #!/usr/local/bin/python3 # -*- coding:utf-8 -*- import time # ----------示例---------- def consumer(na ...

  3. mysql根据二进制日志恢复数据/公司事故实战经验

    根据二进制日志恢复 目的:恢复数据,根据二进制日志将数据恢复到今天任意时刻 增量恢复,回滚恢复 如果有备份好的数据,将备份好的数据导入新数据库时,会随着产生二进制日志 先准备一台初始化的数据库 mys ...

  4. 第一个网页(仿照当当网,仅仅使用CSS)

    这个网页是在学过CSS之后,对当当网首页进行模仿的网页,没有看当当网的网页源码,纯按照自己之前学的写的,由于是刚学过HTML和CSS才一个星期,所以里面有许多地方写的非常没有水平,仅仅用来学习使用,欢 ...

  5. C语言实现计算二进制数字1的个数

    #include<stdio.h> #include<stdlib.h> int print_one_bits01(unsigned int value){ //0000 11 ...

  6. java Spring boot使用spring反射

    spring 反射 当你配置各种各样的bean时,是以配置文件的形式配置的,你需要用到哪些bean就配哪些,spring容器就会根据你的需求去动态加载,你的程序就能健壮地运行. 1.可以通过类名去实例 ...

  7. 【数据库】 SQLite 语法

    [数据库] SQLite 语法 一 . 创建数据库 1. 只需创建数据库,只需创建文件,操作时将连接字符串指向该文件即可 2. 连接字符串 : data source = FilePath; 不能加密 ...

  8. Linux-ls,cd,type命令

    windows: dll:dynamic link library,动态链接库 Linux: .so:shared object,共享对象 操作系统: kernel:内核: 1.进程管理 2.内核管理 ...

  9. 深度可分卷积(Depthwise Separable Conv.)计算量分析

    上次读到深度可分卷积还是去年暑假,各种细节都有些忘了.记录一下,特别是计算量的分析过程. 1. 标准卷积和深度可分卷积 标准卷积(MobileNet论文中称为Standard Convolution, ...

  10. liniux备忘录-磁盘配额与进阶文件系统管理

    知识 磁盘配额Quota 可以限制磁盘的使用容量,可以对用户.群组磁盘的最大使用容量. 磁盘配额Quota的使用限制 只能针对整个文件系统. 核心必须支持Quota. 自行编译的核心需要注意 Quot ...