这个题你发现打暴力的话可以记忆化搜素加剪枝,那么意味着可以递推,我们搜的话就是1010^9我们就往下匹配遇到匹配成功就return,那么我们可以想一下什么决定了状态,我们考虑kmp的过程,对于我们目前匹配到的距离,下一次在匹配时不会用他之后的字符,那么只要我们知道匹配到的距离和已匹配长度就行了,那么我们考虑状态的转移,我们由于要像kmp那样匹配于是我们只要知道在匹配到k位时往下走一个数时匹配到哪,算出a[k][j](在k时到j的方案数),那么新的f[i][j]=∑f[i-1][k]*a[k][j],这里用到了对口遗传的思想,对于舍去的状态,我们不继承就是舍去了

至于钜乘(:••)去某位大佬博客

#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
int n,m,k;
char s[];
int next[];
int a[][],b[][],temp[][];
inline void kmp()
{
a[m-][m-]+=;
a[m-][m-]+=;
for(int i=,K=;i<m;i++)
{
while(K&&s[K]!=s[i])
K=next[K-];
if(s[K]==s[i])
K++;
next[i]=K;
for(int j=;j<=;j++)
{
if(j+==s[i])
{
a[m-i-][m-i]+=;
continue;
}
int l=next[i-];
while(l&&s[l]!=j+)
l=next[l-];
if(s[l]==j+)
l++;
a[m-l][m-i]+=;
}
}
}
inline void Init()
{
scanf("%d%d%d%s",&n,&m,&k,s);
kmp();
}
inline void multi(int x[][],int y[][],int len)
{
memset(temp,,sizeof(temp));
for(int i=;i<=m;i++)
for(int j=;j<=len;j++)
for(int l=;l<=m;l++)
temp[i][j]=(temp[i][j]+y[i][l]*x[l][j])%k;
for(int i=;i<=m;i++)
for(int j=;j<=len;j++)
x[i][j]=temp[i][j];
}
inline void work()
{
b[m][]=;
while(n)
{
if(n&)multi(b,a,);
n>>=;
multi(a,a,m);
}
}
inline void print()
{
int ans=;
for(int i=;i<=m;i++)
ans+=b[i][];
ans%=k;
printf("%d",ans);
}
int main()
{
Init();
work();
print();
return ;
}

BZOJ1009: [HNOI2008]GT考试 矩阵快速幂+kmp+dp的更多相关文章

  1. BZOJ 1009 [HNOI2008]GT考试(矩阵快速幂优化DP+KMP)

    题意: 求长度为n的不含长为m的指定子串的字符串的个数 1s, n<=1e9, m<=50 思路: 长见识了.. 设那个指定子串为s f[i][j]表示长度为i的字符串(其中后j个字符与s ...

  2. BZOJ1009: [HNOI2008]GT考试 (矩阵快速幂 + DP)

    题意:求一个长度为n的数字字符串 (n <= 1e9) 不出现子串s的方案数 题解:用f i,j表示长度为i匹配到在子串j的答案 用kmp的失配函数预处理一下 然后这个转移每一个都是一样的 所以 ...

  3. 2018.10.23 bzoj1297: [SCOI2009]迷路(矩阵快速幂优化dp)

    传送门 矩阵快速幂优化dp简单题. 考虑状态转移方程: f[time][u]=∑f[time−1][v]f[time][u]=\sum f[time-1][v]f[time][u]=∑f[time−1 ...

  4. 2018.10.22 bzoj1009: [HNOI2008]GT考试(kmp+矩阵快速幂优化dp)

    传送门 f[i][j]f[i][j]f[i][j]表示从状态"匹配了前i位"转移到"匹配了前j位"的方案数. 这个东西单次是可以通过跳kmp的fail数组得到的 ...

  5. 【bzoj1009】[HNOI2008]GT考试(矩阵快速幂优化dp+kmp)

    题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=1009 这道题一看数据范围:$ n<=10^9 $,显然不是数学题就是矩乘快速幂优 ...

  6. bzoj1009 [HNOI2008]GT考试——KMP+矩阵快速幂优化DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1009 字符串计数DP问题啊...连题解都看了好多好久才明白,别提自己想出来的蒟蒻我... 首 ...

  7. BZOJ 1009: [HNOI2008]GT考试( dp + 矩阵快速幂 + kmp )

    写了一个早上...就因为把长度为m的也算进去了... dp(i, j)表示准考证号前i个字符匹配了不吉利数字前j个的方案数. kmp预处理, 然后对于j进行枚举, 对数字0~9也枚举算出f(i, j) ...

  8. [HNOI2008] GT考试(DP+矩阵快速幂+KMP)

    题目链接:https://www.luogu.org/problemnew/show/P3193#sub 题目描述 阿申准备报名参加 GT 考试,准考证号为 N 位数 X1,X2…Xn(0 <= ...

  9. BZOJ1009 [HNOI2008]GT考试 矩阵

    去博客园看该题解 题目 [bzoj1009][HNOI2008]GT考试 Description 阿申准备报名参加GT考试,准考证号为N位数X1X2….Xn(0<=Xi<=9),他不希望准 ...

随机推荐

  1. Nodejs 使用 SerialPort 调用串口

    工作经常使用串口读写数据,electron 想要替代原来的客户端,串口成了必须要突破的障碍. get -->  https://github.com/EmergingTechnologyAdvi ...

  2. python文件操作(2017-8-5)

    一.打开文件 open(文件名,模式,编码)#默认模式为只读 f = open("c:/asd.txt") date = f.read() f.close() print(date ...

  3. Leecode刷题之旅-C语言/python-70爬楼梯

    /* * @lc app=leetcode.cn id=70 lang=c * * [70] 爬楼梯 * * https://leetcode-cn.com/problems/climbing-sta ...

  4. ABAP CDS ON HANA-(10)項目結合して一つ項目として表示

    Numeric Functions ABS(arg)  CEIL(arg) DIV(arg1, arg2) DIVISION(arg1, arg2, dec) FLOOR(arg) MOD(arg1, ...

  5. intellij idea之git执行打标签(tag)和删除标签

    intellij idea 版本为2017.2.6 进入Version Control-->log 1.在之前版本中,右键,新建标签 2.输入标签名称,建议输入版本号的方式 3.push标签 由 ...

  6. 初步学习pg_control文件之十四

    接前文 初步学习pg_control文件之十三 看如下几个: /* * Parameter settings that determine if the WAL can be used for arc ...

  7. MySQL server has gone away 错误处理

    解决方案1: 这个是mysql自身的一个机制:     mysql连接的空闲时间超过8小时后 MySQL自动断开该连接解决办法有两个:     1.修改mysql 配置               增 ...

  8. ubuntu 关闭触控板

    第一种: 1 sudo rmmod psmouse    这个是禁用的 2 sudo modprobe psmouse 这个是启用的 这个方法很便捷,但是会将触点和触板都禁用了,一般还是希望保持触点是 ...

  9. Django笔记 —— 模型高级进阶

    最近在学习Django,打算玩玩网页后台方面的东西,因为一直很好奇但却没怎么接触过.Django对我来说是一个全新的内容,思路想来也是全新的,或许并不能写得很明白,所以大家就凑合着看吧- 本篇笔记(其 ...

  10. MySQL☞dual虚拟表

    Dual表:虚拟表,专门用来测试各种函数:(本来以为跟Oracle中的dual表一样,发现还是不太一样)