题目链接

BZOJ4035

题解

神题啊。。。orz

不过网上题解好难看,数学推导不写\(Latex\)怎么看。。【Latex中毒晚期】

我们由题当然能很快写出\(dp\)方程

设\(f[i]\)表示从\(u\)出发逃离的期望步数,\(m\)为该点度数

\[\begin{aligned}
f[u] &= K_uf[1] + \frac{1 - K_u - E_u}{m}\sum\limits_{(u,v) \in edge} (f[v] + 1)\\
&= K_uf[1] + \frac{1 - K_u - E_u}{m}f[fa[u]] + \frac{1 - K_u - E_u}{m}\sum\limits_{(u,v) \in edge \& v \ne fa[u]} f[v] + (1 - K_u - E_u)\\
\end{aligned}
\]

然后就会发现这个方程似乎有后效性,立即想高斯消元

一看范围\(n \le 10^4\)什么鬼嘛QAQ。。。

题解是这么说的:

我们设

\[f[u] = A_uf[1] + B_uf[fa[u]] + C_u
\]

对于叶子节点,显然有

\[\begin{aligned}
A_u &= K_u \\
B_u &= 1 - K_u - E_u \\
C_u &= 1 - K_u - E_u \\
\end{aligned}
\]

对于非叶节点,我们展开\(f[v]\)

\[\begin{aligned}
f[u] &= K_uf[1] + \frac{1 - K_u - E_u}{m}f[fa[u]] + \frac{1 - K_u - E_u}{m}\sum\limits_{(u,v) \in edge \& v \ne fa[u]} f[v] + (1 - K_u - E_u)\\
&= K_uf[1] + \frac{1 - K_u - E_u}{m}f[fa[u]] + \frac{1 - K_u - E_u}{m}\sum\limits_{(u,v) \in edge \& v \ne fa[u]} (A_vf[1] + B_vf[u] + C_v) + (1 - K_u - E_u)\\
\end{aligned}
\]

我们整理一下:

\[f[u] = \frac{K_u + \frac{1 - K_u - E_u}{m}\sum A_v}{1 - \frac{1 - K_u - E_u}{m}\sum B_v}f[1] + \frac{\frac{1 - K_u - E_u}{m}}{1 - \frac{1 - K_u - E_u}{m}\sum B_v}f[fa[u]] + \frac{1 - K_u - E_u - \frac{1 - K_u - E_u}{m}\sum C_v}{1 - \frac{1 - K_u - E_u}{m}\sum B_v}
\]

\[\begin{aligned}
A_u &= \frac{K_u + \frac{1 - K_u - E_u}{m}\sum A_v}{1 - \frac{1 - K_u - E_u}{m}\sum B_v} \\
B_u &= \frac{\frac{1 - K_u - E_u}{m}}{1 - \frac{1 - K_u - E_u}{m}\sum B_v} \\
C_u &= \frac{1 - K_u - E_u - \frac{1 - K_u - E_u}{m}\sum C_v}{1 - \frac{1 - K_u - E_u}{m}\sum B_v} \\
\end{aligned}
\]

然后由于

\[\begin{aligned}
f[1] &= A_1f[1] + B_1 \times 0 + C_1 \\
f[1] &= \frac{C_1}{1 - A_1}
\end{aligned}
\]

当\(1 - A_1 = 0\)时无解

否则我们能直接计算出\(f[1]\),即为所求

是不是很神奇?

这个式子的推导主要是利用了式子中有\(f[fa[u]]\)这一项,从而可以从儿子中递推出父亲的信息

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
#define eps 1e-10
using namespace std;
const int maxn = 10005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int n,h[maxn],ne,de[maxn],fa[maxn];
struct EDGE{int to,nxt;}ed[maxn << 1];
void build(int u,int v){
ed[++ne] = (EDGE){v,h[u]}; h[u] = ne;
ed[++ne] = (EDGE){u,h[v]}; h[v] = ne;
de[u]++; de[v]++;
}
double A[maxn],B[maxn],C[maxn],K[maxn],E[maxn];
int dfs(int u){
if (de[u] == 1 && u != 1){
A[u] = K[u];
B[u] = C[u] = 1 - K[u] - E[u];
return true;
}
double m = de[u],tmp = 0;
A[u] = K[u];
B[u] = (1 - K[u] - E[u]) / m;
C[u] = 1 - K[u] - E[u];
Redge(u) if ((to = ed[k].to) != fa[u]){
fa[to] = u; if (!dfs(to)) return false;
A[u] += A[to] * B[u];
C[u] += C[to] * B[u];
tmp += B[to] * B[u];
}
if (fabs(1 - tmp) < eps) return false;
A[u] /= (1 - tmp); B[u] /= (1 - tmp); C[u] /= (1 - tmp);
return true;
}
int main(){
int T = read();
for (int t = 1; t <= T; t++){
n = read(); cls(de); cls(h); ne = 1;
for (int i = 1; i < n; i++) build(read(),read());
for (int i = 1; i <= n; i++) K[i] = read() / 100.0,E[i] = read() / 100.0;
printf("Case %d: ",t);
if (!dfs(1) || fabs(A[1] - 1) < eps) puts("impossible");
else printf("%.10lf\n",C[1] / (1 - A[1]));
}
return 0;
}

hdu4035 Maze 【期望dp + 数学】的更多相关文章

  1. HDU4035 Maze 期望DP+树形DP(好题)

    题意:有一个树形的迷宫,有N个房间(标号为1~N)以及N-1条通道将它们连通,一开始在1号房间,每进入一个房间i,有k[i]的概率被陷阱杀死回到房间1,有s[i]的概率找到出口逃离迷宫,如果没有找到出 ...

  2. HDU4035 Maze(期望DP)

    题意 抄袭自https://www.cnblogs.com/Paul-Guderian/p/7624039.html 有n个房间,由n-1条隧道连通起来,形成一棵树,从结点1出发,开始走,在每个结点i ...

  3. hdu4035 Maze (树上dp求期望)

    dp求期望的题. 题意: 有n个房间,由n-1条隧道连通起来,实际上就形成了一棵树, 从结点1出发,开始走,在每个结点i都有3种可能: 1.被杀死,回到结点1处(概率为ki) 2.找到出口,走出迷宫 ...

  4. poj 2096 Collecting Bugs && ZOJ 3329 One Person Game && hdu 4035 Maze——期望DP

    poj 2096 题目:http://poj.org/problem?id=2096 f[ i ][ j ] 表示收集了 i 个 n 的那个. j 个 s 的那个的期望步数. #include< ...

  5. HDU4035 Maze (概率DP)

    转:https://www.cnblogs.com/kuangbin/archive/2012/10/03/2711108.html 题意: 有n个房间,由n-1条隧道连通起来,实际上就形成了一棵树, ...

  6. CF908D New Year and Arbitrary Arrangement(期望Dp+数学)

    题目大意:给你一个空字符串,你有\(\frac{pa}{pa+pb}\)的概率往字符串最后面加个\(a\),\(\frac{pb}{pa+pb}\)的概率往字符串最后面加个\(b\),当子序列\(ab ...

  7. HDU.4035.Maze(期望DP)

    题目链接 (直接)设\(F(i)\)为在\(i\)点走出迷宫的期望步数.答案就是\(F(1)\). 令\(p_i=1-k_i-e_i\),表示\(i\)点沿着边走的概率:\(d_i=dgr[i]\), ...

  8. HDU4035 Maze(师傅逃亡系列•二)(循环型 经典的数学期望)

    When wake up, lxhgww find himself in a huge maze. The maze consisted by N rooms and tunnels connecti ...

  9. codeforces1097D Makoto and a Blackboard 数学+期望dp

    题目传送门 题目大意: 给出一个n和k,每次操作可以把n等概率的变成自己的某一个因数,(6可以变成1,2,3,6,并且概率相等),问经过k次操作后,期望是多少? 思路:数学和期望dp  好题好题!! ...

随机推荐

  1. YII2.O学习三 前后台用户数据表分离

    之前我们完成了Advanced 模板安装,也完成了安装adminlte 后台模板,这一步是针对前端和后台用户使用不同的数据库表来管理,做到前后台用户分离的效果: 复制一张user数据表并重命名为adm ...

  2. json模块、os模块

    一.eval模拟序列化操作 1.序列化 内存中的数据-------->转成一种中间格式(字符串)---------->存到文件中 dic={'name':'egon','age':18} ...

  3. Manacher(马拉车)学习笔记

    Manacher可以有效的在\(O(n)\)时间内解决一个字符串的回文子串的题目 目录 简介 讲解 推介 简单的练习 恐怖的练习QAQ 小结 简介 开头都说了,Manacher是目前解决回文子串的最有 ...

  4. Python3 利用pip安装BeautifulSoup4模块(Windows版)

    一.找到Python3的安装文件夹 二.将路径复制 三.Windows10 打开Windows PowerShell(管理员).Windows 8.8.1.7使用cmd 切换到相应目录 四.此目录下的 ...

  5. 44- EF + Identity实现

    1-配置EF, 需要创建如下几个类 默认User主键为guid类型,现在改成int类型 namespace MvcCookieAuthSample.Models { public class Appl ...

  6. 使用Entity Framework出错

          在使用的过程中,写了一个例子,结果就报错说      The context cannot be used while the model is being created.      在 ...

  7. **leetcode笔记--4 Sum of Two Integers

    question: Calculate the sum of two integers a and b, but you are not allowed to use the operator + a ...

  8. windows 10 下的linux子系统用法 -- tmux分屏工具用法

    1 激活linux子系统的方法见百度: 2 打开powershell,输入bash启动子系统终端:输入exit退出: 3 输入tmux attach连接会话:ctrl-b+d 返回终端:ctrl-b+ ...

  9. 如何理解Java中参数传递只能传值?

    以前学习C#的时候,是完全在工作岗位上学习,一些底层较为深入的道理都不是很清楚.如今学习了Java,对于Java参数传递只能传值,不能传引用(指针)感到很困惑,在C#中不是常常说把某个引用传递到函数中 ...

  10. Unity3d创建物体,寻找物体,加载物体,添加脚本

    GetCreateObject: using UnityEngine; public class GetCreateObject : MonoBehaviour { GameObject emptyG ...