CH5702 Count The Repetitions[倍增dp]
给两个串,第一个循环写$n1$次,求第二个最多可以循环写多少次使得其能与第一个循环串非连续匹配。$s \leqslant 100,n \leqslant 10^6$
这个博客貌似鸽了许久了。。
可以想到朴素算法,就是拿第二个串去暴力匹配第一个串,第一个串匹配完了后面再补,直到补到其制限次数。或者用序列自动机?循环串循环次数太多了2333。
可以看出,朴素算法中的一步一步匹配显然效率低下,考虑可不可以向后匹配一次就跳很多格?先处理出原串每个字符和模式串对应上之后向后再匹配1个字符跳的步数,然后由于循环节不大,用倍增优化即可。
$f[i][j][k]$表示文本串第$i$位和模式串第$j$位对应,然后向后匹配成功了$2^k$个字符后跳到文本串什么位置(取模),$g[i][j][k]$表示产生这种行为后文本串会被向后拓展多少次。
设$i'=f[i][j][k-1],j'=(j+2^{k-1}-1)mod$ $len_{s2}+1$
则转移为$f[i][j][k-1]=f[i'][j'][k-1]$,$g[i][j][k]=g[i][j][k-1]+g[i'][j'][k-1]$。
事实上设两种状态表示麻烦了,完全可以用f表示匹配若干2次幂字符后跳到文本串拓展后的哪一位,反正循环次数再多下标也只在int范围内,g数组就可以直接不求而利用f得知了。
最后开始匹配,枚举指数,拼凑最多可以跳多少次,除以$len_{s2}$出答案。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#include<vector>
#define dbg(x) cerr<<#x<<" = "<<x<<endl
#define _dbg(x,y) cerr<<#x<<" = "<<x<<" "<<#y<<" = "<<y<<endl
using namespace std;
typedef long long ll;
template<typename T>inline char MIN(T&A,T B){return A>B?A=B,:;}
template<typename T>inline char MAX(T&A,T B){return A<B?A=B,:;}
template<typename T>inline T _min(T A,T B){return A<B?A:B;}
template<typename T>inline T _max(T A,T B){return A>B?A:B;}
template<typename T>inline T read(T&x){
x=;int f=;char c;while(!isdigit(c=getchar()))if(c=='-')f=;
while(isdigit(c))x=x*+(c&),c=getchar();return f?x=-x:x;
}
const int N=+,LOG=;
vector<int> pos[];
int f[N][N][LOG],g[N][N][LOG],p[LOG];
char a[N],b[N];
int n1,n2,len1,len2,m,cnt,ans;
inline void calc_pow(){for(register int i=;i<=;++i)p[i]=(<<i)%len2;}
inline void Reset(){
for(register int i='a';i<='z';++i)pos[i].clear();
memset(f,,sizeof f),memset(g,,sizeof g);
}
inline char preprocess(){
int k,l;
for(register int i=;i<=len1;++i)pos[a[i]].push_back((int)i);
for(register int i=;i<=len2;++i)if(pos[b[i]].empty())return ;
for(register int j=;j<=len2;++j)
for(register int x=,i=pos[b[j]][];x<(int)pos[b[j]].size();++x,i=pos[b[j]][x]){
(k=j+)>len2?k=:k;
if(*--pos[b[k]].end()<=i)l=pos[b[k]][];else l=*upper_bound(pos[b[k]].begin(),pos[b[k]].end(),(int)i);
f[i][j][]=l,g[i][j][]=l<=i;
}
calc_pow();
for(register int k=;k<=m;++k)
for(register int j=;j<=len2;++j)
for(register int x=,i=pos[b[j]][];x<(int)pos[b[j]].size();++x,i=pos[b[j]][x])
if(f[i][j][]){
int i0=f[i][j][k-],j0=j+p[k-]-;j0>=len2&&(j0-=len2);++j0;
f[i][j][k]=f[i0][j0][k-],g[i][j][k]=g[i][j][k-]+g[i0][j0][k-];
}
return ;
} int main(){//freopen("test.in","r",stdin);freopen("test.out","w",stdout);
while(~scanf("%s%d",b+,&n2)){
scanf("%s%d",a+,&n1);
len1=strlen(a+),len2=strlen(b+);
m=__lg(n1*len1);Reset();
if(preprocess()){printf("0\n");continue;}
int x=pos[b[]][],y=;cnt=,ans=;
for(register int i=m;~i;--i){
if(cnt+g[x][y][i]<=n1){
cnt+=g[x][y][i],ans+=(<<i);
x=f[x][y][i];
y+=p[i]-;y>=len2&&(y-=len2);++y;
}
}
printf("%d\n",ans/len2/n2);
}
return ;
}
等一下。。我傻掉了。状态还可优化。将f改为$f[i][k]$表示从$i$开始匹配模式串(不管$i$自己有没有匹配上,简化了我原来强制要与$j$对应开始匹配的条件),至少匹配多少个字符才可以匹配出$2^k$个模式串。这样暴力预处理匹配单串之后,进行转移。空间和时间上都省了很多很多。→这种方法参考自lyd书。果然菜是原罪。QwQ
CH5702 Count The Repetitions[倍增dp]的更多相关文章
- 第七周 Leetcode 466. Count The Repetitions 倍增DP (HARD)
Leetcode 466 直接给出DP方程 dp[i][k]=dp[i][k-1]+dp[(i+dp[i][k-1])%len1][k-1]; dp[i][k]表示从字符串s1的第i位开始匹配2^k个 ...
- CH5702 Count The Repetitions
题意 5702 Count The Repetitions 0x50「动态规划」例题 描述 定义 conn(s,n) 为 n 个字符串 s 首尾相接形成的字符串,例如: conn("abc& ...
- Codeforces 1140G Double Tree 倍增 + dp
刚开始, 我以为两个点肯定是通过树上最短路径过去的, 无非是在两棵树之间来回切换, 这个可以用倍增 + dp 去维护它. 但是后来又发现, 它可以不通过树上最短路径过去, 我们考虑这样一种情况, 起点 ...
- zoj 3649 lca与倍增dp
参考:http://www.xuebuyuan.com/609502.html 先说题意: 给出一幅图,求最大生成树,并在这棵树上进行查询操作:给出两个结点编号x和y,求从x到y的路径上,由每个结点的 ...
- 洛谷 P1613 跑路 (倍增 + DP + 最短路)
题目链接:P1613 跑路 题意 给定包含 \(n\) 个点和 \(m\) 条边的有向图,每条边的长度为 \(1\) 千米.每秒钟可以跑 \(2^k\) 千米,问从点 \(1\) 到点 \(n\) 最 ...
- 【BZOJ-1833】count数字计数 数位DP
1833: [ZJOI2010]count 数字计数 Time Limit: 3 Sec Memory Limit: 64 MBSubmit: 2494 Solved: 1101[Submit][ ...
- CF451D Count Good Substrings (DP)
Codeforces Round #258 (Div. 2) Count Good Substrings D. Count Good Substrings time limit per test 2 ...
- hdu 3336 Count the string KMP+DP优化
Count the string Problem Description It is well known that AekdyCoin is good at string problems as w ...
- uva 10712 - Count the Numbers(数位dp)
题目链接:uva 10712 - Count the Numbers 题目大意:给出n,a.b.问说在a到b之间有多少个n. 解题思路:数位dp.dp[i][j][x][y]表示第i位为j的时候.x是 ...
随机推荐
- 收集整理的awk用法小结
awk 用法:awk ‘ pattern {action} ‘ 变量名 含义 ARGC 命令行变元个数 ARGV 命令行变元数组 FILENAME 当前输入文件名 FNR 当前文件中的记录号 FS 输 ...
- Android摄像头测量尺(Advanced Ruler Pro)使用方法
http://www.cnblogs.com/sinojelly/archive/2010/08/13/1799341.html Advanced Ruler Pro是一个Android手机应用程序, ...
- Android 平台电容式触摸屏的驱动基本原理
Android 平台电容式触摸屏的驱动基本原理 Android 平台电容式触摸屏硬件基本原理 Linux 与 Android 的多点触摸协议 Linux输入子系统:事件的编码
- 嵌入式C函数优化
0. 引言 这是一个简单函数的优化,但却体现了代码易读性和效率的综合考虑. 如果问我如何写出优秀的代码,答曰:再写一版. 1. 版本1 从环形buffer中取出数据,然后放到一个结构体中.buffer ...
- 前端之CSS样式
一.CSS 1.什么是CSS 层叠样式表(英文全称:Cascading Style Sheets)是一种用来表现HTML(标准通用标记语言的一个应用)或XML(标准通用标记语言的一个子集)等文件样式的 ...
- redis 第二篇 系统命令简介 上
一.系统级命令(不归属任何一个数据结构) 从keys命令说起 1. 可以模式匹配 也就是可以用正则表达式的方式来匹配 格式为KEYS pattern glob风格通配符规则 ? 匹配一个字符 ...
- iOS上架被拒原因及解决办法
简单的记录一下,近期APP上架所遇到的坑爹事儿吧!! 第一次提交: 第二天给了回复,内容如下: .Guideline - Performance - Software Requirements You ...
- INSPIRED启示录 读书笔记 - 第13章 产品原则
确定什么最重要 产品原则是对团队信仰和价值观的总结,用来指导产品团队作出正确的决策和取舍.它体现了产品团队的目标和愿景,是产品战略的重要组成部分.从形式上看,它是一系列明确的.体现团队特色的产品价值准 ...
- Elasticsearch6.0简介入门介绍
Elasticsearch简单介绍 Elasticsearch (ES)是一个基于Lucene构建的开源.分布式.RESTful 接口全文搜索引擎.Elasticsearch 还是一个分布式文档数据库 ...
- QT QDialog如何弹出一个子窗口
1. 假设已有一个QDialog的父窗口, 想弹出的子窗口为自己实现的myDialog : QDialog. myDialog 设计和平常的QDialog一样, childDialog : publi ...