题目链接:http://poj.org/problem?id=2125

思路:将最小点权覆盖转化为最小割模型,于是拆点建图,将点i拆成i,i+n,其中vs与i相连,边容量为w[i]-,i+n与vt相连,边容量为w[i]+,如果i,j有边相连,则i与j+n连边inf.从而跑最大流求解。对于输出解决放案,我们可以在残余网络中进行dfs,从vs出发,对于那些i<=n没有遍历到的点,说明被取走了,输出‘-’,对于那些i>n遍历到的点,说明之前有j->i的边(j<=n),vs->j不是最小割中的边,i是最小割中的点,输出‘+’。

copy一张图:

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
#define MAXN 222
#define MAXM 2222222
#define inf 1<<30 struct Edge{
int v,cap,next;
}edge[MAXM]; int n,m,NE,vs,vt,NV;
int head[MAXN]; void Insert(int u,int v,int cap)
{
edge[NE].v=v;
edge[NE].cap=cap;
edge[NE].next=head[u];
head[u]=NE++; edge[NE].v=u;
edge[NE].cap=;
edge[NE].next=head[v];
head[v]=NE++;
} int from[MAXN],to[MAXN];
bool map[MAXN][MAXN]; void Build()
{
NE=;
memset(head,-,sizeof(head));
vs=,vt=*n+,NV=*n+;
for(int i=;i<=n;i++){
Insert(vs,i,to[i]);
Insert(i+n,vt,from[i]);
for(int j=;j<=n;j++){
if(map[i][j])Insert(i,j+n,inf);
}
}
} int level[MAXN],gap[MAXN];
void bfs(int vt)
{
memset(level,-,sizeof(level));
memset(gap,,sizeof(gap));
level[vt]=;
gap[level[vt]]++;
queue<int>que;
que.push(vt);
while(!que.empty()){
int u=que.front();
que.pop();
for(int i=head[u];i!=-;i=edge[i].next){
int v=edge[i].v;
if(level[v]<){
level[v]=level[u]+;
gap[level[v]]++;
que.push(v);
}
}
}
} int cur[MAXN],pre[MAXN]; int SAP(int vs,int vt)
{
bfs(vt);
memset(pre,-,sizeof(pre));
memcpy(cur,head,sizeof(head));
int maxflow=,aug=inf;
int u=pre[vs]=vs;
gap[]=NV;
while(level[vs]<NV){
bool flag=false;
for(int &i=cur[u];i!=-;i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap>&&level[u]==level[v]+){
flag=true;
pre[v]=u;
u=v;
aug=min(aug,edge[i].cap);
if(v==vt){
maxflow+=aug;
for(u=pre[v];v!=vs;v=u,u=pre[u]){
edge[cur[u]].cap-=aug;
edge[cur[u]^].cap+=aug;
}
aug=inf;
}
break;
}
}
if(flag)continue;
int minlevel=NV;
for(int i=head[u];i!=-;i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap>&&level[v]<minlevel){
minlevel=level[v];
cur[u]=i;
}
}
if(--gap[level[u]]==)break;
level[u]=minlevel+;
gap[level[u]]++;
u=pre[u];
}
return maxflow;
} bool mark[MAXN];
void dfs(int u)
{
mark[u]=true;
for(int i=head[u];i!=-;i=edge[i].next){
int v=edge[i].v;
if(!mark[v]&&edge[i].cap>)dfs(v);
}
} int main()
{
// freopen("1.txt","r",stdin);
int u,v,cnt;
while(~scanf("%d%d",&n,&m)){
for(int i=;i<=n;i++)scanf("%d",&from[i]);
for(int i=;i<=n;i++)scanf("%d",&to[i]);
memset(map,false,sizeof(map));
while(m--){
scanf("%d%d",&u,&v);
map[u][v]=true;
}
Build();
printf("%d\n",SAP(vs,vt));
memset(mark,false,sizeof(mark));
dfs(vs);
cnt=;
for(int i=;i<=*n;i++){
if(!mark[i]&&i<=n)cnt++;
else if(mark[i]&&i>n)cnt++;
}
printf("%d\n",cnt);
for(int i=;i<=*n;i++){
if(!mark[i]&&i<=n)printf("%d -\n",i);
else if(mark[i]&&i>n)printf("%d +\n",i-n);
}
}
return ;
}

poj 2125(最小割)的更多相关文章

  1. poj 3204(最小割--关键割边)

    Ikki's Story I - Road Reconstruction Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 7 ...

  2. POJ 3469 最小割 Dual Core CPU

    题意: 一个双核CPU上运行N个模块,每个模块在两个核上运行的费用分别为Ai和Bi. 同时,有M对模块需要进行数据交换,如果这两个模块不在同一个核上运行需要额外花费. 求运行N个模块的最小费用. 分析 ...

  3. POJ 2125 最小点权覆盖集(输出方案)

    题意:给一个图(有自回路,重边),要去掉所有边,规则:对某个点,可以有2种操作:去掉进入该点 的所有边,也可以去掉出该点所有边,(第一种代价为w+,第二种代价为w-).求最小代价去除所有边. 己思:点 ...

  4. 网络流 poj 3308 最小割

    t个样例 n*m的矩阵 L个伞兵 给出每行每列装激光的花费 伞兵的位置 要求杀死所有伞兵 总费用为这些费用的乘积  求花费最小 建图  源点 ->   行   -> 列  -> 汇点 ...

  5. poj 3084 最小割

    题目链接:http://poj.org/problem?id=3084 本题主要在构图上,我采用的是把要保护的房间与源点相连,有intruder的与汇点相连,相对麻烦. #include <cs ...

  6. poj 3469 最小割模板sap+gap+弧优化

    /*以核心1为源点,以核心2为汇点建图,跑一遍最大流*/ #include<stdio.h> #include<string.h> #include<queue> ...

  7. POJ 2125 Destroying The Graph (二分图最小点权覆盖集+输出最小割方案)

    题意 有一个图, 两种操作,一种是删除某点的所有出边,一种是删除某点的所有入边,各个点的不同操作分别有一个花费,现在我们想把这个图的边都删除掉,需要的最小花费是多少. 思路 很明显的二分图最小点权覆盖 ...

  8. poj 2125 Destroying The Graph 最小割+方案输出

    构图思路: 1.将所有顶点v拆成两个点, v1,v2 2.源点S与v1连边,容量为 W- 3.v2与汇点连边,容量为 W+ 4.对图中原边( a, b ), 连边 (a1,b2),容量为正无穷大 则该 ...

  9. poj 2125 Destroying The Graph (最小点权覆盖)

    Destroying The Graph http://poj.org/problem?id=2125 Time Limit: 2000MS   Memory Limit: 65536K       ...

随机推荐

  1. struts2设置文件上传大小

    利用struts2想要设置或者限制上传文件的大小,可以在struts.xml配置文件里面进行如下配置: <constant name="struts.multipart.maxSize ...

  2. Laravel 5系列教程五:MVC的基本流程

    免费视频教程地址https://laravist.com/series/laravel-5-basic 期间受到很多私事影响,终于还是要好好写写laravel的教程了. 上一篇我们说了数据库和Eloq ...

  3. CentOS 7 yum安装失败问题

    在CentOS 7中,执行yum安装,一直报错,错误信息如下 其实在上述的错误信息中,上述中的repodata/repomd.xml文件据说是/mnt目录rpm包的目录,路径 在/mnt中因为没有/r ...

  4. Java8 CompletableFuture组合式的编程(笔记)

    * 实现异步API public double getPrice(String product) { return calculatePrice(product); } /** * 同步计算商品价格的 ...

  5. PJOI PKU Campus 2011 B:A Problem about Tree LCA 求随意点x为根的y的父节点

    题目链接:点击打开链接 题意:给定n个点 m个询问 以下n-1行给定一棵树 m个询问 x y 问把树转成以x为根 y的父节点是谁 第一种情况lca==y那就是x的第 dep[x] - dep[y] - ...

  6. 一个256行代码的第一人称引擎(Direct2D移植版)

    这篇文章是对"a first person engine in 265 lines"[1]的一个Direct2D版的移植.看到这篇文章我立刻就想到了QUAKE,当然QUAKE使用了 ...

  7. linux如何手动释放linux内存

    当在Linux下频繁存取文件后,物理内存会很快被用光,当程序结束后,内存不会被正常释放,而是一直作为caching.这个问题,貌似有不少人在问,不过都没有看到有什么很好解决的办法.那么我来谈谈这个问题 ...

  8. HttpClient Coder Example

    Example 1:   HttpClient httpClient = new HttpClient();                 httpClient.getHostConfigurati ...

  9. HTML5之坦克大战游戏开发

    1.在使用arc方法进行画圆时,在IE9+,FF,Safari,Chrome等已经支持HTML5标准的浏览器中进行渲染时,采用逆时针方向画时,也就是说 arc(x, y, radius, startA ...

  10. RIP协议

    1.概念:RIP协议是一种内部网关协议(IGP),是一种动态路由选择协议,用于自治系统(AS)内的路由信息的传递.        RIP协议基于距离矢量算法(DistanceVectorAlgorit ...