【BZOJ1912】[Apio2010]patrol 巡逻

Description

Input

第一行包含两个整数 n, K(1 ≤ K ≤ 2)。接下来 n – 1行,每行两个整数 a, b, 表示村庄a与b之间有一条道路(1 ≤ a, b ≤ n)。

Output

输出一个整数,表示新建了K 条道路后能达到的最小巡逻距离。

Sample Input

8 1
1 2
3 1
3 4
5 3
7 5
8 5
5 6

Sample Output

11

HINT

10%的数据中,n ≤ 1000, K = 1; 
30%的数据中,K = 1; 
80%的数据中,每个村庄相邻的村庄数不超过 25; 
90%的数据中,每个村庄相邻的村庄数不超过 150; 
100%的数据中,3 ≤ n ≤ 100,000, 1 ≤ K ≤ 2。

题解:一开始看错题,以为是每个点都要经过,于是GG~

当k=1时,假如我们选出的边所覆盖的路径长度为len,所以总长度就是(n-1)*2-len+1,那么显然选的是直径。

当k=2时,我们一定还会选择直径吗?其实我们一定还会选择直径的两端点,因为你可以想象,如果选的两条路径都经过直径的两端点,那么将其中一条路径改为经过直径的端点一定不会更差。那么我们就先将直径选出来,剩下的那条路径呢?

一开始想的是将直径拎出来,然后跑一个非常复杂的树形DP,但是看了题解。。。直接将直径上的所有边权值设为-1,再求一遍直径即可。正确性如何保证?如果这两条路径不相交,显然正确;如果相交,那么相当于将原路径拆成了两条。所以做法还是很巧妙的~

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int maxn=100010;
int n,m,cnt,ans,len,r1,r2;
int dep[maxn],to[maxn<<1],next[maxn<<1],val[maxn<<1],head[maxn],fa[maxn],from[maxn],md[maxn];
inline void add(int a,int b)
{
to[cnt]=b,val[cnt]=1,next[cnt]=head[a],head[a]=cnt++;
}
void dfs(int x)
{
if(dep[x]>dep[r2]) r2=x;
for(int i=head[x];i!=-1;i=next[i]) if(to[i]!=fa[x]) from[to[i]]=i,fa[to[i]]=x,dep[to[i]]=dep[x]+1,dfs(to[i]);
}
void dfs2(int x)
{
md[x]=0;
for(int i=head[x];i!=-1;i=next[i]) if(to[i]!=fa[x])
{
fa[to[i]]=x,dfs2(to[i]);
len=max(len,md[x]+md[to[i]]+val[i]),md[x]=max(md[x],md[to[i]]+val[i]);
}
}
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
int main()
{
n=rd(),m=rd();
int i,a,b;
memset(head,-1,sizeof(head));
for(i=1;i<n;i++) a=rd(),b=rd(),add(a,b),add(b,a);
dfs(1);
r1=r2,fa[r1]=dep[r1]=0,dfs(r1),ans=((n-1)<<1)-dep[r2]+1;
if(m==1)
{
printf("%d",ans);
return 0;
}
for(i=r2;i!=r1;i=fa[i]) val[from[i]]=-1,val[from[i]^1]=-1;
fa[1]=0,dfs2(1),ans=min(ans,ans-len+1);
printf("%d",ans);
return 0;
}//8 2 1 2 3 1 3 4 5 3 7 5 8 5 5 6

【BZOJ1912】[Apio2010]patrol 巡逻 树形DP的更多相关文章

  1. 【树形dp 最长链】bzoj1912: [Apio2010]patrol 巡逻

    富有思维性的树形dp Description Input 第一行包含两个整数 n, K(1 ≤ K ≤ 2).接下来 n – 1行,每行两个整数 a, b, 表示村庄a与b之间有一条道路(1 ≤ a, ...

  2. BZOJ1912 [Apio2010]patrol 巡逻

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...

  3. 2018.11.06 bzoj1912: [Apio2010]patrol 巡逻(树形dp)

    传送门 一道挺妙的题啊. 对于K==1K==1K==1的直接求树的直径. 对于K==2K==2K==2的先求一次直径,然后考虑到如果两条边加进去形成的两个环重叠就会有负的贡献. 因此把之前那条直径上的 ...

  4. BZOJ1912:[APIO2010]patrol巡逻

    Description Input 第一行包含两个整数 n, K(1 ≤ K ≤ 2).接下来 n – 1行,每行两个整数 a, b, 表示村庄a与b之间有一条道路(1 ≤ a, b ≤ n). Ou ...

  5. 【BZOJ-1912】patrol巡逻 树的直径 + DFS(树形DP)

    1912: [Apio2010]patrol 巡逻 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 1034  Solved: 562[Submit][St ...

  6. [Apio2010]patrol 巡逻

    1912: [Apio2010]patrol 巡逻 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 2541  Solved: 1288[Submit][S ...

  7. BZOJ 1912:[Apio2010]patrol 巡逻(树直径)

    1912: [Apio2010]patrol 巡逻 Input 第一行包含两个整数 n, K(1 ≤ K ≤ 2).接下来 n – 1行,每行两个整数 a, b, 表示村庄a与b之间有一条道路(1 ≤ ...

  8. bzoj 1912: [Apio2010]patrol 巡逻【不是dp是枚举+堆】

    我是智障系列.用了及其麻烦的方法= =其实树形sp就能解决 设直径长度+1为len(环长) 首先k=1,直接连直径两端就好,答案是2*n-len 然后对于k=2,正常人的做法是树形dp:先求直径,然后 ...

  9. 【bzoj1912】 Apio2010—patrol 巡逻

    http://www.lydsy.com/JudgeOnline/problem.php?id=1912 (题目链接) 题意 给出一棵树,要求在树上添加K(1 or 2)条边,添加的边必须经过一次,使 ...

随机推荐

  1. Linux学习笔记 (六)用户管理命令

    一.用户帐号 1.超级用户:具有操作系统中的最高权限,用来管理和维护操作系统.root用户. 2.普通用户:由root用户来创建,在宿主目录中具有完全权限. 3.程序用户:由应用程序添加,维护某个应用 ...

  2. mui 跨域请求

    <ul class="mui-table-view" style="margin-top: 25px;"> <li class="m ...

  3. LeetCode 格雷码序列的生成

    问题概述:在一组数的编码中,若随意两个相邻的代码仅仅有一位二进制数不同.则称这样的编码为格雷码. 2位数的格雷码序列:00 : 001 : 111 : 310 : 2找规律:假设要求n位的格雷码,先要 ...

  4. Flume入门样例

    Flume 作为 cloudera 开发的实时日志收集系统,受到了业界的认可与广泛应用.Flume 初始的发行版本目前被统称为 Flume OG(original generation),属于 clo ...

  5. MQTT压力测试之Tsung的使用

    简介 Tsung 是一个压力测试工具,可以测试包括HTTP, WebDAV, PostgreSQL, MySQL, LDAP, and XMPP/Jabber等服务器.针对 HTTP 测试,Tsung ...

  6. win10 VS code 编译运行 C/C++的方法

    具体配置过程如下链接: https://zhuanlan.zhihu.com/p/35178331 但中间出了点问题:CTRL+ALT+n 运行后: PS D:\C++> cd "d: ...

  7. Python内置函数之exec()

    exec(object[,gobals[,locals]])这个函数和eval()有相同的作用,用来做运算的. 区别是,exec()可以直接将运算结果赋值给变量对象,而eval()只能运算不能赋值. ...

  8. Goole Python 风格指南 中文版

    http://zh-google-styleguide.readthedocs.io/en/latest/google-python-styleguide/

  9. phxsql安装小记

    PhxSQL具有服务高可用.数据强一致.高性能.运维简单.和MySQL完全兼容的特点. 服务高可用:PhxSQL集群内只要多数派节点存活就能正常提供服务:出于性能的考虑,集群会选举出一个Master节 ...

  10. linu保持远程会话

    django的server启动后,若关闭ssh会就会自动切断进程,结汇对话 命令scree会保持这个会话,在关闭ssh后,仍然能访问 shell下 1screen 进入后 2启动server 关闭ss ...