【BZOJ1912】[Apio2010]patrol 巡逻

Description

Input

第一行包含两个整数 n, K(1 ≤ K ≤ 2)。接下来 n – 1行,每行两个整数 a, b, 表示村庄a与b之间有一条道路(1 ≤ a, b ≤ n)。

Output

输出一个整数,表示新建了K 条道路后能达到的最小巡逻距离。

Sample Input

8 1
1 2
3 1
3 4
5 3
7 5
8 5
5 6

Sample Output

11

HINT

10%的数据中,n ≤ 1000, K = 1; 
30%的数据中,K = 1; 
80%的数据中,每个村庄相邻的村庄数不超过 25; 
90%的数据中,每个村庄相邻的村庄数不超过 150; 
100%的数据中,3 ≤ n ≤ 100,000, 1 ≤ K ≤ 2。

题解:一开始看错题,以为是每个点都要经过,于是GG~

当k=1时,假如我们选出的边所覆盖的路径长度为len,所以总长度就是(n-1)*2-len+1,那么显然选的是直径。

当k=2时,我们一定还会选择直径吗?其实我们一定还会选择直径的两端点,因为你可以想象,如果选的两条路径都经过直径的两端点,那么将其中一条路径改为经过直径的端点一定不会更差。那么我们就先将直径选出来,剩下的那条路径呢?

一开始想的是将直径拎出来,然后跑一个非常复杂的树形DP,但是看了题解。。。直接将直径上的所有边权值设为-1,再求一遍直径即可。正确性如何保证?如果这两条路径不相交,显然正确;如果相交,那么相当于将原路径拆成了两条。所以做法还是很巧妙的~

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int maxn=100010;
int n,m,cnt,ans,len,r1,r2;
int dep[maxn],to[maxn<<1],next[maxn<<1],val[maxn<<1],head[maxn],fa[maxn],from[maxn],md[maxn];
inline void add(int a,int b)
{
to[cnt]=b,val[cnt]=1,next[cnt]=head[a],head[a]=cnt++;
}
void dfs(int x)
{
if(dep[x]>dep[r2]) r2=x;
for(int i=head[x];i!=-1;i=next[i]) if(to[i]!=fa[x]) from[to[i]]=i,fa[to[i]]=x,dep[to[i]]=dep[x]+1,dfs(to[i]);
}
void dfs2(int x)
{
md[x]=0;
for(int i=head[x];i!=-1;i=next[i]) if(to[i]!=fa[x])
{
fa[to[i]]=x,dfs2(to[i]);
len=max(len,md[x]+md[to[i]]+val[i]),md[x]=max(md[x],md[to[i]]+val[i]);
}
}
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
int main()
{
n=rd(),m=rd();
int i,a,b;
memset(head,-1,sizeof(head));
for(i=1;i<n;i++) a=rd(),b=rd(),add(a,b),add(b,a);
dfs(1);
r1=r2,fa[r1]=dep[r1]=0,dfs(r1),ans=((n-1)<<1)-dep[r2]+1;
if(m==1)
{
printf("%d",ans);
return 0;
}
for(i=r2;i!=r1;i=fa[i]) val[from[i]]=-1,val[from[i]^1]=-1;
fa[1]=0,dfs2(1),ans=min(ans,ans-len+1);
printf("%d",ans);
return 0;
}//8 2 1 2 3 1 3 4 5 3 7 5 8 5 5 6

【BZOJ1912】[Apio2010]patrol 巡逻 树形DP的更多相关文章

  1. 【树形dp 最长链】bzoj1912: [Apio2010]patrol 巡逻

    富有思维性的树形dp Description Input 第一行包含两个整数 n, K(1 ≤ K ≤ 2).接下来 n – 1行,每行两个整数 a, b, 表示村庄a与b之间有一条道路(1 ≤ a, ...

  2. BZOJ1912 [Apio2010]patrol 巡逻

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...

  3. 2018.11.06 bzoj1912: [Apio2010]patrol 巡逻(树形dp)

    传送门 一道挺妙的题啊. 对于K==1K==1K==1的直接求树的直径. 对于K==2K==2K==2的先求一次直径,然后考虑到如果两条边加进去形成的两个环重叠就会有负的贡献. 因此把之前那条直径上的 ...

  4. BZOJ1912:[APIO2010]patrol巡逻

    Description Input 第一行包含两个整数 n, K(1 ≤ K ≤ 2).接下来 n – 1行,每行两个整数 a, b, 表示村庄a与b之间有一条道路(1 ≤ a, b ≤ n). Ou ...

  5. 【BZOJ-1912】patrol巡逻 树的直径 + DFS(树形DP)

    1912: [Apio2010]patrol 巡逻 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 1034  Solved: 562[Submit][St ...

  6. [Apio2010]patrol 巡逻

    1912: [Apio2010]patrol 巡逻 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 2541  Solved: 1288[Submit][S ...

  7. BZOJ 1912:[Apio2010]patrol 巡逻(树直径)

    1912: [Apio2010]patrol 巡逻 Input 第一行包含两个整数 n, K(1 ≤ K ≤ 2).接下来 n – 1行,每行两个整数 a, b, 表示村庄a与b之间有一条道路(1 ≤ ...

  8. bzoj 1912: [Apio2010]patrol 巡逻【不是dp是枚举+堆】

    我是智障系列.用了及其麻烦的方法= =其实树形sp就能解决 设直径长度+1为len(环长) 首先k=1,直接连直径两端就好,答案是2*n-len 然后对于k=2,正常人的做法是树形dp:先求直径,然后 ...

  9. 【bzoj1912】 Apio2010—patrol 巡逻

    http://www.lydsy.com/JudgeOnline/problem.php?id=1912 (题目链接) 题意 给出一棵树,要求在树上添加K(1 or 2)条边,添加的边必须经过一次,使 ...

随机推荐

  1. Android SlidingMenu 使用具体解释

    转载请标明出处:http://blog.csdn.net/lmj623565791/article/details/36677279 非常多APP都有側滑菜单的功能.部分APP左右都是側滑菜单~Sli ...

  2. J2EE规范

    J2EE是由SUN提出的用于简化开发企业级应用程序的一系列规范的组合,J2EE基于中间层集成的框架的方式为应用开发提供了一个统一的开发平台.基于容器管理.组件化的模型为企业建立一个高可用性,高可靠性可 ...

  3. Python——调用shell命令的三种方法

    1.用os.system(cmd)   不过取不了返回值 2.用os.popen(cmd)   要得到命令的输出内容,只需再调用下read()或readlines()等 如a=os.popen(cmd ...

  4. Android模拟器Genymotion安装apk

    一.下载apk 选择你需要安装的apk进行下载,下载完以后放在与adb.exe同一目录下: 看我的 二.安装apk遇到的问题 开启Genymotion模拟器,然后cmd到你的platform-tool ...

  5. HDU 3861 The King’s Problem(强连通+二分图最小路径覆盖)

    HDU 3861 The King's Problem 题目链接 题意:给定一个有向图,求最少划分成几个部分满足以下条件 互相可达的点必须分到一个集合 一个对点(u, v)必须至少有u可达v或者v可达 ...

  6. ajaxform 提交,返回JSON时,IE提示下载的问题解决

    在使用AJAXform提交表单时,返回的数据格式为JSON,头文件是application/json 时,在 火狐.ie9和谷歌下都能正常解析,在ie7下会提示下载. 解决方法:指定返回页的头文件为& ...

  7. W25Q128页数和扇区数

    int8_t STORAGE_GetCapacity (uint8_t lun, uint32_t *block_num, uint32_t *block_size){ *block_size = 4 ...

  8. svn:database disk image is malformed问题解决方法

    今天一客户使用我们软件时突然停电,再次启动软件查询SQLite数据库报 The database disk image is malformed 错误. 百度一下基本上全部是http://www.cn ...

  9. Atitit.跨语言数据库db  api兼容性 jdbc odbc ado oledb 增强方案

    Atitit.跨语言数据库db  api兼容性 jdbc odbc ado oledb 增强方案 1. 跨语言db api兼容性..1 2. 目前访问数据库的接口很多.比较常用的jdbc odbc 以 ...

  10. Camera2/HAL3

    Android Camera HAL3中拍照Capture模式下多模块间的交互与帧Result与帧数据回调https://blog.csdn.net/gzzaigcnforever/article/d ...