【kruscal】【最小生成树】【搜索】bzoj1016 [JSOI2008]最小生成树计数
不用Matrix-tree定理什么的,一边kruscal一边 对权值相同的边 暴搜即可。将所有方案乘起来。
#include<cstdio>
#include<algorithm>
using namespace std;
int n,m;
struct Disjoint_Set
{
int fa[],rank[];
void init(){for(int i=;i<=n;i++) fa[i]=i;}
int findroot(int x)
{
if(fa[x]==x) return x;
int rt=findroot(fa[x]);
fa[x]=rt;
return rt;
}
void Union(int U,int V)
{
if(rank[U]<rank[V]) fa[U]=V;
else
{
fa[V]=U;
if(rank[U]==rank[V]) rank[U]++;
}
}
};
Disjoint_Set S,used;
struct Edge{int u,v,w;};
bool cmp(const Edge &a,const Edge &b){return a.w<b.w;}
Edge edges[];
int res,ans=,tot,cnt,sta,end;
void dfs(int cur,int sum,Disjoint_Set now)
{
if(cur>end)
{
if(sum==cnt) res++;
return;
}
dfs(cur+,sum,now);
int f1=now.findroot(edges[cur].u),f2=now.findroot(edges[cur].v);
if(f1!=f2) {now.Union(f1,f2); dfs(cur+,sum+,now);}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++) scanf("%d%d%d",&edges[i].u,&edges[i].v,&edges[i].w);
sort(edges+,edges+m+,cmp);
S.init();used.init();
for(int i=;i<=m;i++)
{
if(edges[i].w!=edges[i-].w) {used=S; cnt=; sta=i;}
int f1=S.findroot(edges[i].u),f2=S.findroot(edges[i].v);
if(f1!=f2) {S.Union(f1,f2); tot++; cnt++;}
if(edges[i].w!=edges[i+].w)
{
res=; end=i;
dfs(sta,,used);
ans=((ans%)*(res%))%;
}
else if(tot==n-)
{
res=;
for(int j=i+;j<=m;j++)
if(edges[j].w!=edges[i].w)
{
end=j-;
goto OUT;
}
end=m;
OUT:dfs(sta,,used);
ans=((ans%)*(res%))%;
break;
}
}
printf("%d\n",tot==n- ? ans : );
return ;
}
【kruscal】【最小生成树】【搜索】bzoj1016 [JSOI2008]最小生成树计数的更多相关文章
- 【Matrix-tree定理】【并查集】【kruscal算法】bzoj1016 [JSOI2008]最小生成树计数
题意:求一个图的最小生成树个数. 矩阵树定理:一张无向图的生成树个数 = (度数矩阵 - 邻接矩阵)的任意一个n-1主子式的值. 度数矩阵除了对角线上D[i][i]为i的度数(不计自环)外,其他位置是 ...
- 【最小生成树】BZOJ1016: [JSOI2008]最小生成树计数
Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...
- bzoj1016 [JSOI2008]最小生成树计数
1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 3517 Solved: 1396[Submit][St ...
- bzoj1016: [JSOI2008]最小生成树计数(kruskal+dfs)
1016: [JSOI2008]最小生成树计数 题目:传送门 题解: 神题神题%%% 据说最小生成树有两个神奇的定理: 1.权值相等的边在不同方案数中边数相等 就是说如果一种方案中权值为1的边有n条 ...
- 2018.09.24 bzoj1016: [JSOI2008]最小生成树计数(并查集+搜索)
传送门 正解是并查集+矩阵树定理. 但由于数据范围小搜索也可以过. 我们需要知道最小生成树的两个性质: 不同的最小生成树中,每种权值的边出现的个数是确定的 不同的生成树中,某一种权值的边连接完成后,形 ...
- [BZOJ1016][JSOI2008]最小生成树计数 最小生成树 搜索
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1016 做这道题之前需要知道一些结论,同一个图的最小生成树中相同权值的边的个数是不会变的,如 ...
- BZOJ1016:[JSOI2008]最小生成树计数(最小生成树,DFS)
Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...
- [bzoj1016][JSOI2008]最小生成树计数 (Kruskal + Matrix Tree 定理)
Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...
- [BZOJ1016][JSOI2008]最小生成树计数(结论题)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1016 分析: 首先有个性质:如果边集E.E'都可以表示一个图G的最小生成树(当然E和E ...
随机推荐
- POJ2112:Optimal Milking(Floyd+二分图多重匹配+二分)
Optimal Milking Time Limit: 2000MS Memory Limit: 30000K Total Submissions: 20262 Accepted: 7230 ...
- java过滤器和监听器详解
过滤器 1.Filter工作原理(执行流程) 当客户端发出Web资源的请求时,Web服务器根据应用程序配置文件设置的过滤规则进行检查,若客户请求满足过滤规则,则对客户请求/响应进行拦截,对请求头和请求 ...
- SpringBoot入门学习(一): Idea 创建 SpringBoot 的 HelloWorld
创建项目: 项目结构: 程序启动入口: 正式开始: package com.example.demo; import org.springframework.boot.SpringApplicatio ...
- rpmdb open failed解决方案
1.前提条件:安装软件包的时候,被我手动终止了(可能出错原因)[root@dhcp yum.repos.d]# yum clean allrpmdb: Thread/process 4541/1406 ...
- 【uva11468-Substring】AC自动机+dp
http://acm.hust.edu.cn/vjudge/problem/31655 题意:给定k个模板串,n个字符以及选择它的概率pro[i],要构造一个长度问L的字符串s,问s不包含任意一个模板 ...
- 第一个java的小东西
第一次自己写的一个java的小东西,毕竟自己第一次写的,其中可谓是历经艰难,最后总结下来就是java实在是不适合写界面化的东西代码量比较大,这还不是最关键的,最关键的是控件的位置实在是太难控制了. 这 ...
- vscode Python 运行环境配置
{ "git.ignoreMissingGitWarning": true, "window.zoomLevel": 1, "[python]&quo ...
- 硬币问题 tarjan缩点+DP 莫涛
2013-09-15 20:04 题目描述 有这样一个游戏,桌面上摆了N枚硬币,分别标号1-N,每枚硬币有一个分数C[i]与一个后继硬币T[i].作为游戏参与者的你,可以购买一个名为mlj的小机器人, ...
- Red-Black Tree
A red-black tree is a Binary Search Tree that satisfy the red-black tree properties: 1. Every node i ...
- linux驱动基础系列--Linux I2c驱动分析
前言 主要是想对Linux I2c驱动框架有一个整体的把控,因此会忽略协议上的某些细节,同时里面涉及到的一些驱动基础,比如平台驱动.设备模型.sysfs等也不进行详细说明原理,涉及到i2c协议部分也只 ...