POJ - 1061 扩展gcd
题意:求\((n-m)t+Lk=x-y\)的解\(t\)
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<string>
#include<vector>
#include<stack>
#include<queue>
#include<set>
#include<map>
#define rep(i,j,k) for(register int i=j;i<=k;i++)
#define rrep(i,j,k) for(register int i=j;i>=k;i--)
#define erep(i,u) for(register int i=head[u];~i;i=nxt[i])
#define iin(a) scanf("%d",&a)
#define lin(a) scanf("%lld",&a)
#define din(a) scanf("%lf",&a)
#define s0(a) scanf("%s",a)
#define s1(a) scanf("%s",a+1)
#define print(a) printf("%lld",(ll)a)
#define enter putchar('\n')
#define blank putchar(' ')
#define println(a) printf("%lld\n",(ll)a)
#define IOS ios::sync_with_stdio(0)
using namespace std;
const int maxn = 1e6+11;
const int oo = 0x3f3f3f3f;
const double eps = 1e-7;
typedef long long ll;
ll read(){
ll x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
ll exgcd(ll a,ll b,ll &x,ll &y){
if(b==0){
x=1;y=0;
return a;
}else{
ll gcd=exgcd(b,a%b,x,y);
ll tmp=x;
x=y;y=tmp-a/b*x;
return gcd;
}
}
int main(){
int kase=0;
ll x,y,m,n,L,MOD;
while(cin>>x>>y>>m>>n>>L){
ll t,k;
ll gcd=exgcd(n-m+L,L,t,k);
if((x-y+L)%gcd!=0) cout<<"Impossible"<<endl;
else{
t=t*(x-y+L)/gcd;
MOD=L/gcd;
t=(t%MOD+MOD)%MOD;
cout<<t<<endl;
}
}
return 0;
}
POJ - 1061 扩展gcd的更多相关文章
- poj 1061 扩展欧几里得解同余方程(求最小非负整数解)
题目可以转化成求关于t的同余方程的最小非负数解: x+m*t≡y+n*t (mod L) 该方程又可以转化成: k*L+(n-m)*t=x-y 利用扩展欧几里得可以解决这个问题: eg:对于方程ax+ ...
- poj 1061 扩展欧几里德同余方程求解
摘要写在一瞪眼. #include<iostream> using namespace std; long long exgcd(long long a,long long b,long ...
- poj 1061(扩展欧几里得定理求不定方程)
两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特 ...
- POJ 1061 扩展欧几里得
#include<stdio.h> #include<string.h> typedef long long ll; void gcd(ll a,ll b,ll& d, ...
- POJ - 1061 扩展欧几里德算法+求最小正整数解
//#pragma comment(linker, "/STACK:1024000000,1024000000") //#pragma GCC optimize(2) #inclu ...
- POJ 1061 青蛙的约会(扩展GCD求模线性方程)
题目地址:POJ 1061 扩展GCD好难懂.. 看了半天.最终把证明什么的都看明确了. .推荐一篇博客吧(戳这里),讲的真心不错.. 直接上代码: #include <iostream> ...
- Poj 1061 青蛙的约会(扩展GCD)
题目链接:http://poj.org/problem?id=1061 解题报告:两只青蛙在地球的同一条纬度线上,选取一个点位坐标轴原点,所以现在他们都在同一个首尾相连的坐标轴上,那么他们现在的位置分 ...
- poj 1061 青蛙的约会(扩展gcd)
题目链接 题意:两只青蛙从数轴正方向跑,给出各自所在位置, 和数轴长度,和各自一次跳跃的步数,问最少多少步能相遇. 分析:(x+m*t) - (y+n*t) = p * L;(t是跳的次数,L是a青蛙 ...
- 扩展欧几里德 POJ 1061
欧几里德的是来求最大公约数的,扩展欧几里德,基于欧几里德实现了一种扩展,是用来在已知a, b求解一组x,y使得ax+by = Gcd(a, b) =d(解一定存在,根据数论中的相关定理,证明是用裴蜀定 ...
随机推荐
- 575. Distribute Candies 平均分糖果,但要求种类最多
[抄题]: Given an integer array with even length, where different numbers in this array represent diffe ...
- hibernate 框架的简单使用
<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE hibernate-configuratio ...
- poj1722 SUBTRACT
应该是基础的dp练手题 线性dp最主要的就是关于阶段的划分,这个题中我没想到的一点就是开状态的时候使用了前i个数能合成的数来记录 我自己的想法就是类似于区间dp这样的记录方法,这种方法确实开了很多冗余 ...
- 二度Xml<2>
一下介绍xml的基本操作,添加xml新节点: 其他方法在前一篇日记中有详细讲解,请详见:http://www.cnblogs.com/fjsnail/archive/2012/10/20/273212 ...
- Linux 下安装tomcat 服务器
1. 下载tomcat wget http://apache.fayea.com/tomcat/tomcat-7/v7.0.68/bin/apache-tomcat-7.0.68.tar.gz tar ...
- HDU - 1251 统计难题(trie树)
Ignatius最近遇到一个难题,老师交给他很多单词(只有小写字母组成,不会有重复的单词出现),现在老师要他统计出以某个字符串为前缀的单词数量(单词本身也是自己的前缀). Input输入数据的第一部 ...
- Android 中menu在activity中的使用
1.在res下选择new 选择Android resource directory 2.在弹出框中Resource type选择menu 3.在res下就可以看到menu文件夹 4.在menu文件夹 ...
- mysql5.6数据库双机热备、主从备份
主题:mysql5.6数据库双机热备.主从备份 缘由: 在Web应用系统中,数据库性能是导致系统性能瓶颈最主要的原因之一.尤其是在大规模系统中,数据库集群已经成为必备的配置之一.集群的好处主要有:查询 ...
- 用css画的一个图形 空心正方形+四边四色
div{ width: 100px; height: 100px; border: 100px solid black; border-left-color:darkcyan; border-righ ...
- C# enum 枚举 反射
枚举遍历 public enum EMyType { [System.ComponentModel.Description("A类型")] TypeA = 1, [System.C ...