POJ - 1061 扩展gcd
题意:求\((n-m)t+Lk=x-y\)的解\(t\)
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<string>
#include<vector>
#include<stack>
#include<queue>
#include<set>
#include<map>
#define rep(i,j,k) for(register int i=j;i<=k;i++)
#define rrep(i,j,k) for(register int i=j;i>=k;i--)
#define erep(i,u) for(register int i=head[u];~i;i=nxt[i])
#define iin(a) scanf("%d",&a)
#define lin(a) scanf("%lld",&a)
#define din(a) scanf("%lf",&a)
#define s0(a) scanf("%s",a)
#define s1(a) scanf("%s",a+1)
#define print(a) printf("%lld",(ll)a)
#define enter putchar('\n')
#define blank putchar(' ')
#define println(a) printf("%lld\n",(ll)a)
#define IOS ios::sync_with_stdio(0)
using namespace std;
const int maxn = 1e6+11;
const int oo = 0x3f3f3f3f;
const double eps = 1e-7;
typedef long long ll;
ll read(){
ll x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
ll exgcd(ll a,ll b,ll &x,ll &y){
if(b==0){
x=1;y=0;
return a;
}else{
ll gcd=exgcd(b,a%b,x,y);
ll tmp=x;
x=y;y=tmp-a/b*x;
return gcd;
}
}
int main(){
int kase=0;
ll x,y,m,n,L,MOD;
while(cin>>x>>y>>m>>n>>L){
ll t,k;
ll gcd=exgcd(n-m+L,L,t,k);
if((x-y+L)%gcd!=0) cout<<"Impossible"<<endl;
else{
t=t*(x-y+L)/gcd;
MOD=L/gcd;
t=(t%MOD+MOD)%MOD;
cout<<t<<endl;
}
}
return 0;
}
POJ - 1061 扩展gcd的更多相关文章
- poj 1061 扩展欧几里得解同余方程(求最小非负整数解)
题目可以转化成求关于t的同余方程的最小非负数解: x+m*t≡y+n*t (mod L) 该方程又可以转化成: k*L+(n-m)*t=x-y 利用扩展欧几里得可以解决这个问题: eg:对于方程ax+ ...
- poj 1061 扩展欧几里德同余方程求解
摘要写在一瞪眼. #include<iostream> using namespace std; long long exgcd(long long a,long long b,long ...
- poj 1061(扩展欧几里得定理求不定方程)
两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特 ...
- POJ 1061 扩展欧几里得
#include<stdio.h> #include<string.h> typedef long long ll; void gcd(ll a,ll b,ll& d, ...
- POJ - 1061 扩展欧几里德算法+求最小正整数解
//#pragma comment(linker, "/STACK:1024000000,1024000000") //#pragma GCC optimize(2) #inclu ...
- POJ 1061 青蛙的约会(扩展GCD求模线性方程)
题目地址:POJ 1061 扩展GCD好难懂.. 看了半天.最终把证明什么的都看明确了. .推荐一篇博客吧(戳这里),讲的真心不错.. 直接上代码: #include <iostream> ...
- Poj 1061 青蛙的约会(扩展GCD)
题目链接:http://poj.org/problem?id=1061 解题报告:两只青蛙在地球的同一条纬度线上,选取一个点位坐标轴原点,所以现在他们都在同一个首尾相连的坐标轴上,那么他们现在的位置分 ...
- poj 1061 青蛙的约会(扩展gcd)
题目链接 题意:两只青蛙从数轴正方向跑,给出各自所在位置, 和数轴长度,和各自一次跳跃的步数,问最少多少步能相遇. 分析:(x+m*t) - (y+n*t) = p * L;(t是跳的次数,L是a青蛙 ...
- 扩展欧几里德 POJ 1061
欧几里德的是来求最大公约数的,扩展欧几里德,基于欧几里德实现了一种扩展,是用来在已知a, b求解一组x,y使得ax+by = Gcd(a, b) =d(解一定存在,根据数论中的相关定理,证明是用裴蜀定 ...
随机推荐
- linux的deamon后台运行
有的时候需要将程序一直跑在后台,比如一些服务类代码,或者一些监控类代码.使用deamon是正确的一种思路. 以前我们在看<unix环境高级编程>的时候,有专门的整章详细介绍如何编写一个后台 ...
- scala _ parameter
Given that sequence, use reduceLeft to determine different properties about the collection. The foll ...
- 内存中DataTable去除重复行
删除内存中DataTable表的重复行 假设在内存中(不是数据库中)有两个表: 表一:TableA Name Phone 张三 123456 李四 123457 王五 1234568 表二:Table ...
- redis过期key的清理策略
一,有三种不同的删除策略(1),立即清理.在设置键的过期时间时,创建一个回调事件,当过期时间达到时,由时间处理器自动执行键的删除操作. (2),惰性清理.键过期了就过期了,不管.当读/写一个已经过期的 ...
- Requests接口测试(三)
一.定制请求头 我们先来看一下,关于请求头的定制演示,相信了解http协议的小伙伴应该对请求头部headers请求头部并不陌生,那么作为实际工作中的我们,如果想自定义一些请求头的信息,我们应该怎么办呢 ...
- LightOJ 1027 A Dangerous Maze (数学期望)
题意:你面前有 n 个门,每次你可以选择任意一个进去,如果xi是正数,你将在xi后出去,如果xi是负数,那么xi后你将回来并且丢失所有记忆,问你出去的期望. 析:两种情况,第一种是直接出去,期望就是 ...
- HTML5拓扑3D机房,电力工控Web SCADA
http://www.hightopo.com/cn-index.html 一套丰富的JavaScript界面类库, 提供完整的基于HTML5图形界面组件库.使用HT for Web您可以轻松构建现代 ...
- CSVHelper 导出CSV 格式
public class CSVHelper { System.Windows.Forms.SaveFileDialog saveFileDialog1;//保存 private string hea ...
- DB2 函数快速构造测试数据
函数快速构造测试数据 [案例]使用DB2内置函数快速构造测试数据 无论您是在用原型证明某一概念,还是开发一个全新的应用程序,或者只是学习 SQL,您都需要在您的应用程序上运行测试数据.为了有效地测试应 ...
- Linux Linux下安装wine
Linux下安装wine Linux下安装wine可以从源码编译安装,但一般都觉得麻烦,所以尽量利用yum进行安装,解决很多包的依赖关系. 首先安装一个epel rpm -ivh http://dl. ...