题目传送门

题意:

给出一幅无向带权图,q次询问,每次询问都求一棵包含给出的边的最小生成树。

思路:

首先求出最小生成树(kruskal),如果查询的边在最小生成树上,肯定是直接输出最小生成树,如果不在树上,那么这条必须连的边会和生成树形成一个环,我们就要去掉这个环上最大的一条边,就得到了答案(最小生成树是通过局部最优解得到全局最优解的,所以如果这样做,得到的是符合要求的最优解)。

赛中队友提出一个问题,如果有两棵不同的最小生成树那这个做法不就错了吗,但其实如果有两棵最小生成树,这两棵树 相同权值的边的条数是一样的,是同分异构,所以做法还是正确的。

而求环上的最大值,其实是求树上的最大值,所以在做kruskal的时候建立一幅新图,然后用lca求最大值。注意最大值的更新,很容易错。

#include<cstdio>
#include<algorithm>
#include<iostream>
#include<vector>
#include<map>
#include<set>
#include<cstring>
#include<queue>
#include<stack>
#include<cmath>
#define CLR(a,b) memset(a,b,sizeof(a))
#define mkp(a,b) make_pair(a,b)
using namespace std;
const int maxn = ;
typedef long long ll;
int n, m, head[maxn], tot, vis[maxn],fa[maxn],deep[maxn],t,f[maxn][],ma[maxn][];
int ans;
struct edge {
int to, w, Next;
edge() {}
edge(int to, int Next, int w) :to(to), Next(Next), w(w) {}
}a[maxn * ];
map<pair<int, int >, int >mp;
struct node {
int u, v, w;
node(int u, int v, int w) :u(u), v(v), w(w) {}
};
vector<node>g;
void addv(int u, int v, int w) {
a[++tot] = { v,head[u],w };
head[u] = tot;
}
void init() {
CLR(head, -);
for (int i = ; i <= n; i++)fa[i] = i;
tot = ;
}
int find(int x)
{
return x == fa[x] ? x : fa[x] = find(fa[x]);
}
inline void baba(int x, int y)
{
int fx = find(x), fy = find(y);
fa[fx] = fy;
}
bool cmp(node &a, node &b)
{
return a.w < b.w;
}
inline void kruskal() {
sort(g.begin(), g.end(), cmp);
for (int i = ; i < m; i++)
{
int x = find(g[i].u);
int y = find(g[i].v);
if (x == y)continue;
addv(g[i].u, g[i].v, g[i].w);
addv(g[i].v, g[i].u, g[i].w);
baba(x, y);
ans += g[i].w;
}
}
inline void bfs() {
queue<int >q;
q.push();
deep[] = ;
while (!q.empty())
{
int x = q.front();
q.pop();
for (int i = head[x]; i != -; i = a[i].Next)
{
int y = a[i].to;
if (deep[y])continue;
deep[y] = deep[x] + ;
f[y][] = x;
ma[y][] = a[i].w;
for (int j = ; j <= t; j++)
{
f[y][j] = f[f[y][j - ]][j - ];
ma[y][j] = max(ma[y][j-], ma[f[y][j - ]][j - ]);
}
q.push(y); }
}
}
int lca(int x, int y)
{
int maxx = ;
if (deep[x] > deep[y])swap(x, y);
for (int i = t; i >= ; i--)
{
if (deep[f[y][i]] >= deep[x]) {
maxx = max(maxx, ma[y][i]);
y = f[y][i];
}
}
if (x == y)return maxx;
for (int i = t; i >= ; i--)
{
if (f[x][i] != f[y][i]) {
maxx = max(maxx, ma[x][i]);
maxx = max(maxx, ma[y][i]);
x = f[x][i], y = f[y][i];
}
}
//printf("debug\n");
maxx=max(maxx,ma[x][]);
maxx=max(maxx,ma[y][]);
return maxx;
}
int main() {
scanf("%d%d", &n, &m);
init();
for(int i=;i<=m;i++)
{
int u, v;
int w;
scanf("%d%d%d", &u, &v, &w);
if (u > v)swap(u, v);
mp[make_pair(u, v)] = w;
g.push_back(node{ u,v,w });
}
kruskal();
t = (int)(log(n) / log()) + ;
bfs();
// for (int i = 1; i <= n; i++)
// {
// printf("i:%d deep:%d\n", i, deep[i]);
// }
int q;
cin >> q;
while (q--)
{
int u, v;
scanf("%d%d", &u, &v);
if (u > v)swap(u, v);
// printf("u:%d v:%d\n", u, v);
// printf("ans:%d lca:%d mp:%d\n",ans,lca(u,v),mp[make_pair(u,v)]);
printf("%d\n", ans - lca(u, v)+mp[make_pair(u,v)]);
}
} /* 5 7
1 2 6
1 3 4
3 4 2
1 5 7
4 5 4
2 4 1
3 5 3
1
4 5 */

gym 101889I Imperial roads 最小生成树+LCA的更多相关文章

  1. hdu Constructing Roads (最小生成树)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=1102 /************************************************* ...

  2. 【最小生成树+LCA】Imperial roads

    http://codeforces.com/gym/101889 I 先跑一遍最小生成树,把经过的边和答案记录下来 对于每个询问的边,显然如果处于MST中,答案不变 如果不在MST中,假设这条边连上了 ...

  3. GYM 101889I(mst+lca)

    最小生成树上倍增询问裸的. const int maxn = 2e5 + 5; int n, m, q; //图 struct Edge { int u, v; ll cost; bool opera ...

  4. Gym - 101173H Hangar Hurdles (kruskal重构树/最小生成树+LCA)

    题目大意:给出一个n*n的矩阵,有一些点是障碍,给出Q组询问,每组询问求两点间能通过的最大正方形宽度. 首先需要求出以每个点(i,j)为中心的最大正方形宽度mxl[i][j],可以用二维前缀和+二分或 ...

  5. poj 1251 Jungle Roads (最小生成树)

    poj   1251  Jungle Roads  (最小生成树) Link: http://poj.org/problem?id=1251 Jungle Roads Time Limit: 1000 ...

  6. bzoj3732: Network--kruskal最小生成树+LCA

    这是一道写起来比较顺手的题目 没有各种奇怪的细节,基本就是Kruskal和倍增LCA的模板.. 题目大意:对于一个无向带权图,询问两点之间一条路,使得这条路上的最长边最小,输出最小最长边的的值 那么既 ...

  7. hdu 1301 Jungle Roads 最小生成树

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1301 The Head Elder of the tropical island of Lagrish ...

  8. HDU 1102 Constructing Roads (最小生成树)

    最小生成树模板(嗯……在kuangbin模板里面抄的……) 最小生成树(prim) /** Prim求MST * 耗费矩阵cost[][],标号从0开始,0~n-1 * 返回最小生成树的权值,返回-1 ...

  9. hdu Jungle Roads(最小生成树)

    Problem Description The Head Elder of the tropical island of Lagrishan has a problem. A burst of for ...

随机推荐

  1. 用JS,打印99乘法表

    <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...

  2. bash: telnet: command not found

    //安装telnet服务 yum -y install telnet-server //安装telnet客户端 yum -y install telnet.*

  3. javaScript之节点操作

    javaScript程序员避免不了要操作页面中的DOM,除了经常使用的: appendChild()向childNodes列表的末尾添加一个节点. insertBefore(),接受两个参数,要插入的 ...

  4. PL/SQL批处理语句(一)BULK COLLECT

    我们知道PL/SQL程序中运行SQL语句是存在开销的,因为SQL语句是要提交给SQL引擎处理,这种在PL/SQL引擎和SQL引擎之间的控制转移叫做上下文却换,每次却换时,都有额外的开销.然而,FORA ...

  5. B和strong以及i和em的区别(转)

    B和strong以及i和em的区别 (2013-12-31 13:58:35) 标签: b strong i em 搜索引擎 分类: 网页制作 一直以来都以为B和strong以及i和em是相同的效果, ...

  6. 使用HttpClient进行Get通信

    --------------siwuxie095                             首先到 Apache官网 下载相关的库文件     Apache官网:http://www.a ...

  7. 利用JavaScriptCore实现简单的功能(阶乘)

    #import "RootViewController.h" #import <JavaScriptCore/JavaScriptCore.h> @interface ...

  8. CLRInjection - 通用托管注入(超级灰色按钮克星升级版)

    通用托管注入 - CLRInjection CLR软件系列第二发: 通用托管注入 - CLRInjection 软件简介:这款软件可以将任意托管DLL用插件的形式,注入到正在运行中的.net托管程序集 ...

  9. 远程桌面--------ms12-020 漏洞复现 (死亡蓝屏)

    漏洞名:MS12-020(全称:Microsoft windows远程桌面协议RDP远程代码执行漏洞) 介绍:RDP协议是一个多通道的协议,让用户连上提供微软终端机服务的电脑. windows在处理某 ...

  10. 巧用 git rebase 合并多个 commit。

    一.为什么需要合并多个 commit 呢?   有时候,我们开发一个功能. 修修补补 commit 了很多次,过多的 commit 会显得很复杂. 不够直观,不能比较清晰查看那些 commit 是对应 ...