Description

欢乐岛上有个非常好玩的游戏,叫做“紧急集合”。在岛上分散有N个等待点,有N-1条道路连接着它们,每一条道路都连接某两个等待点,且通过这些道路可以走遍所有的等待点,通过道路从一个点到另一个点要花费一个游戏币。

参加游戏的人三人一组,开始的时候,所有人员均任意分散在各个等待点上(每个点同时允许多个人等待),每个人均带有足够多的游戏币(用于支付使用道路的花费)、地图(标明等待点之间道路连接的情况)以及对话机(用于和同组的成员联系)。当集合号吹响后,每组成员之间迅速联系,了解到自己组所有成员所在的等待点后,迅速在N个等待点中确定一个集结点,组内所有成员将在该集合点集合,集合所用花费最少的组将是游戏的赢家。

小可可和他的朋友邀请你一起参加这个游戏,由你来选择集合点,聪明的你能够完成这个任务,帮助小可可赢得游戏吗?

Input

第一行两个正整数N和M(N<=500000,M<=500000),之间用一个空格隔开。分别表示等待点的个数(等待点也从1到N进行编号)和获奖所需要完成集合的次数。 随后有N-1行,每行用两个正整数A和B,之间用一个空格隔开,表示编号为A和编号为B的等待点之间有一条路。 接着还有M行,每行用三个正整数表示某次集合前小可可、小可可的朋友以及你所在等待点的编号。

Output

一共有M行,每行两个数P,C,用一个空格隔开。其中第i行表示第i次集合点选择在编号为P的等待点,集合总共的花费是C个游戏币。

我天,这题恶心坏了.

话说没出样例就敢交题的我实在是tql。 ~w~

明显到\(LCA\)处就能取到最小的值。

会需要求到\(6\)种(貌似可以求的更少.

首先这六种情况怎么算出来的.

\[C_{3}^{2} \times 2 =6
\]

其中\(C_3^2\)代表在三个点中,随便选两个点求\(LCA\)记作\(X\)。

然后再求第三个点与\(X\)的\(LCA\)记作\(Y\)

注意,这里要选择\(X\)作为集合点.这样会更优.

因为走到\(Y\)的话就会是两个点对花费的贡献.这样明显更大啊.

而走到\(X\),这两个点对花费的贡献就会比较小了,另一个人多走就好了.

但是感觉不太对.但又的确是对的 emmm

比如这样:

  

简单来看的话,我们求出了\(b\)和\(c\)的\(LCA=X\)

\(a\)和\(X\)的\(LCA=Y\)

此时\(a,b,c\)走到\(X\)的价值为\(4\),走到\(Y\)的价值为\(5\)

(这只是一个小栗子啦 qwq)

代码

#include<cstdio>
#include<cctype>
#include<algorithm>
#define R register
#define N 500008
using namespace std;
inline void in(int &x)
{
int f=1;x=0;char s=getchar();
while(!isdigit(s)){if(s=='-')f=-1;s=getchar();}
while(isdigit(s)){x=x*10+s-'0';s=getchar();}
x*=f;
}
int head[N],tot,depth[N],dis[N];
int n,m,gw[N][21],f[N][21];
struct cod{int u,v;}edge[N<<2];
inline void add(int x,int y,int z)
{
edge[++tot].u=head[x];
edge[tot].v=y;
head[x]=tot;
}
void dfs(int u,int fa)
{
f[u][0]=fa;depth[u]=depth[fa]+1;
dis[u]=dis[fa]+1;
for(R int i=1;(1<<i)<=depth[u];i++)
f[u][i]=f[f[u][i-1]][i-1];
for(R int i=head[u];i;i=edge[i].u)
{
if(edge[i].v==fa)continue;
dfs(edge[i].v,u);
}
}
inline int lca(int x,int y)
{
if(depth[x]>depth[y])swap(x,y);
for(R int i=17;i>=0;i--)
if(depth[x]+(1<<i)<=depth[y])
y=f[y][i];
if(x==y)return y;
for(R int i=17;i>=0;i--)
{
if(f[x][i]==f[y][i])continue;
x=f[x][i],y=f[y][i];
}
return f[x][0];
}
int main()
{
in(n),in(m);
for(R int i=1,x,y;i<n;i++)
in(x),in(y),add(x,y,1),add(y,x,1);
dfs(1,0);
for(R int i=1,x,y,z;i<=m;i++)
{
in(x),in(y),in(z);
R int a=lca(x,y),b=lca(x,z),c=lca(y,z);
R int aa=lca(a,z),bb=lca(y,b),cc=lca(x,c);
R int father,res=214748364;
int ansa=dis[x]+dis[y]-2*dis[a]+dis[a]-2*dis[aa]+dis[z];
int ansb=dis[x]+dis[z]-2*dis[b]+dis[b]-2*dis[bb]+dis[y];
int ansc=dis[y]+dis[z]-2*dis[c]+dis[c]-2*dis[cc]+dis[x];
if(res>ansa)res=ansa,father=a;
if(res>ansb)res=ansb,father=b;
if(res>ansc)res=ansc,father=c;
printf("%d %d\n",father,res);
}
}

LCA【p4281】[AHOI2008]紧急集合 / 聚会的更多相关文章

  1. P4281 [AHOI2008]紧急集合 / 聚会

    P4281 [AHOI2008]紧急集合 / 聚会 lca 题意:求3个点的lca,以及3个点与lca的距离之和. 性质:设点q1,q2,q3 两点之间的lca t1=lca(q1,q2) t2=lc ...

  2. P4281 [AHOI2008]紧急集合 / 聚会[LCA]

    解析 蒟蒻用的办法比较蠢,不如上面的各位大佬,直接化成一个式子了,我还是分类讨论做的. 下面正文. 猜想:最优集合点一定是三点任意两对点对应的路径的交点. 不妨这样想,如果任意两个人经过同一条路径,那 ...

  3. LUOGU P4281 [AHOI2008]紧急集合 / 聚会 (lca)

    传送门 解题思路 可以通过手玩或打表发现,其实要选的点一定是他们三个两两配对后其中一对的$lca$上,那么就直接算出来所有的$lca$,比较大小就行了. #include<iostream> ...

  4. [AHOI2008]紧急集合 / 聚会(LCA)

    [AHOI2008]紧急集合 / 聚会 题目描述 欢乐岛上有个非常好玩的游戏,叫做"紧急集合".在岛上分散有N个等待点,有N-1条道路连接着它们,每一条道路都连接某两个等待点,且通 ...

  5. 【题解】洛谷P4281 [AHOI2008] 紧急集合(求三个点LCA)

    洛谷P4281:https://www.luogu.org/problemnew/show/P4281 思路 答案所在的点必定是三个人所在点之间路径上的一点 本蒟蒻一开始的想法是:先求出2个点之间的L ...

  6. [AHOI2008]紧急集合 / 聚会

    题目描述 欢乐岛上有个非常好玩的游戏,叫做“紧急集合”.在岛上分散有N个等待点,有N-1条道路连接着它们,每一条道路都连接某两个等待点,且通过这些道路可以走遍所有的等待点,通过道路从一个点到另一个点要 ...

  7. Luogu 4281 [AHOI2008]紧急集合 / 聚会

    BZOJ 1832 写起来很放松的题. 首先发现三个点在树上一共只有$3$种形态,大概长这样: 这种情况下显然走到三个点的$lca$最优. 这种情况下走到中间那个点最优. 这种情况下走到$2$最优. ...

  8. 洛谷 P4281 [AHOI2008] 紧急集合 题解

    挺好的一道题,本身不难,就把求两个点的LCA变为求三个点两两求LCA,不重合的点才是最优解.值得一提的是,最后对答案的处理运用差分的思想:假设两点 一点深度为d1,另一点 深度为d2,它们LCA深度为 ...

  9. 「AHOI2008」「LuoguP4281」紧急集合 / 聚会(LCA

    题目描述 欢乐岛上有个非常好玩的游戏,叫做“紧急集合”.在岛上分散有N个等待点,有N-1条道路连接着它们,每一条道路都连接某两个等待点,且通过这些道路可以走遍所有的等待点,通过道路从一个点到另一个点要 ...

随机推荐

  1. WPF and Silverlight.ComboBox 如何通过 Binding IsDropDownOpen 实现下拉菜单展开

    In the WPF example the Popup and the ToggleButton (the arrow on the right) are bound with the proper ...

  2. heat模板

    Heat 目前支持两种格式的模板,一种是基于 JSON 格式的 CFN 模板:另外一种是基于 YAML 格式的 HOT 模板.CFN 模板主要是为了保持对 AWS 的兼容性.HOT 模板是 Heat ...

  3. CPU指令集不同导致的core分析

    最近程序需要支持CGSL系统运行,测试中发现相同操作系统的两台机器,编译机运行正常,测试机coredump.core信息汇总如下,可以看出是由于测试机不支持编译后的指令导致的问题: Program t ...

  4. Java 复习计划

    前言 打算下学期开学,也就是九月份,去找实习,现在还有三个月时间.(然而还在天天玩 Python..) 定个复习计划. 1. 基础 并发:Java并发编程实战 [ x ] SQL:MySQL,看看书, ...

  5. kibana的查询语法

    kibana的查询语法是    字段Fields:关键词

  6. html5 download blob

    html5 download blob https://stackoverflow.com/questions/19327749/javascript-blob-filename-without-li ...

  7. Asymptotic I Catalan Number

    卡特兰数出现在许多计数问题中. 常见的例子有:$n$ 个节点的有序二叉树,$2n$ 个括号构成的合法括号序列. 在上面所举的两个例子中,很容易看出卡特兰数满足递推: $$ C_{n+1} = \sum ...

  8. [洛谷P4725]【模板】多项式对数函数

    题目大意:给出$n-1$次多项式$A(x)$,求一个 $\bmod{x^n}$下的多项式$B(x)$,满足$B(x) \equiv \ln A(x)$.在$\bmod{998244353}$下进行.保 ...

  9. Installing Wine 1.5: configure: error: Cannot build a 32-bit program, you need to install 32-bit development libraries(转载)

    Installing Wine 1.5: configure: error: Cannot build a 32-bit program, you need to install 32-bit dev ...

  10. Change hostname and IP on Soalris10

    To see the existing configuration: # ifconfig -a Update the following files for IP Address: /etc/hos ...