在接下去说其他的聚类算法之前,让我们先插进来说一说一个有点跑题的东西:Vector Quantization。这项技术广泛地用在信号处理以及数据压缩等领域。事实上,在 JPEG 和 MPEG-4 等多媒体压缩格式里都有 VQ 这一步。

Vector Quantization 这个名字听起来有些玄乎,其实它本身并没有这么高深。大家都知道,模拟信号是连续的值,而计算机只能处理离散的数字信号,在将模拟信号转换为数字信号的时候,我们可以用区间内的某一个值去代替着一个区间,比如,[0, 1) 上的所有值变为 0 ,[1, 2) 上的所有值变成 1 ,如此类推。其这就是一个 VQ 的过程。一个比较正式一点的定义是:VQ 是将一个向量空间中的点用其中的一个有限子集来进行编码的过程。

一个典型的例子就是图像的编码。最简单的情况,考虑一个灰度图片,0 为黑色,1 为白色,每个像素的值为 [0, 1] 上的一个实数。现在要把它编码为 256 阶的灰阶图片,一个最简单的做法就是将每一个像素值 x 映射为一个整数 floor(x*255) 。当然,原始的数据空间也并不以一定要是连续的。比如,你现在想要把压缩这个图片,每个像素只使用 4 bit (而不是原来的 8 bit)来存储,因此,要将原来的 [0, 255] 区间上的整数值用 [0, 15] 上的整数值来进行编码,一个简单的映射方案是 x*15/255 。

VQ 2

不过这样的映射方案颇有些 Naive ,虽然能减少颜色数量起到压缩的效果,但是如果原来的颜色并不是均匀分布的,那么的出来的图片质量可能并不是很好。例如,如果一个 256 阶灰阶图片完全由 0 和 13 两种颜色组成,那么通过上面的映射就会得到一个全黑的图片,因为两个颜色全都被映射到 0 了。一个更好的做法是结合聚类来选取代表性的点。

实际做法就是:将每个像素点当作一个数据,跑一下 K-means ,得到 k 个 centroids ,然后用这些 centroids 的像素值来代替对应的 cluster 里的所有点的像素值。对于彩色图片来说,也可以用同样的方法来做,例如 RGB 三色的图片,每一个像素被当作是一个 3 维向量空间中的点。

用本文开头那张 Rechard Stallman 大神的照片来做一下实验好了,VQ 2、VQ 10 和 VQ 100 三张图片分别显示聚类数目为 2 、10 和 100 时得到的结果,可以看到 VQ 100 已经和原图非常接近了。把原来的许多颜色值用 centroids 代替之后,总的颜色数量减少了,重复的颜色增加了,这种冗余正是压缩算法最喜欢的。考虑一种最简单的压缩办法:单独存储(比如 100 个)centroids 的颜色信息,然后每个像素点存储 centroid 的索引而不是颜色信息值,如果一个 RGB 颜色值需要 24 bits 来存放的话,每个(128 以内的)索引值只需要 7 bits 来存放,这样就起到了压缩的效果。

VQ 100

VQ 10

实现代码很简单,直接使用了 SciPy 提供的 kmeans 和 vq 函数,图像读写用了 Python Image Library :

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#!/usr/bin/python
 
from scipy.cluster.vq import kmeans, vq
from numpy import array, reshape, zeros
from mltk import image
 
vqclst = [2, 10, 100, 256]
 
data = image.read('example.jpg')
(height, width, channel) = data.shape
 
data = reshape(data, (height*width, channel))
for k in vqclst:
print 'Generating vq-%d...' % k
(centroids, distor) = kmeans(data, k)
(code, distor) = vq(data, centroids)
print 'distor: %.6f' % distor.sum()
im_vq = centroids[code, :]
image.write('result-%d.jpg' % k, reshape(im_vq,
(height, width, channel)))

当然,Vector Quantization 并不一定要用 K-means 来做,各种能用的聚类方法都可以用,只是 K-means 通常是最简单的,而且通常都够用了。

漫谈 Clustering (番外篇): Vector Quantization的更多相关文章

  1. 漫谈 Clustering (番外篇): Dimensionality Reduction

    由于总是有各种各样的杂事,这个系列的文章竟然一下子拖了好几个月,(实际上其他的日志我也写得比较少),现在决定还是先把这篇降维的日志写完.我甚至都以及忘记了在这个系列中之前有没有讲过“特征”(featu ...

  2. 漫谈 Clustering (番外篇): Expectation Maximization

    Expectation Maximization (EM) 是一种以迭代的方式来解决一类特殊最大似然 (Maximum Likelihood) 问题的方法,这类问题通常是无法直接求得最优解,但是如果引 ...

  3. UVW源码漫谈(番外篇)—— Emitter

    这两天天气凉了,苏州这边连续好几天都是淅淅沥沥的下着小雨,今天天气还稍微好点.前两天早上起来突然就感冒了,当天就用了一卷纸,好在年轻扛得住,第二天就跟没事人似的.在这里提醒大家一下,天气凉了,睡凉席的 ...

  4. 【番外篇】ASP.NET MVC快速入门之免费jQuery控件库(MVC5+EF6)

    目录 [第一篇]ASP.NET MVC快速入门之数据库操作(MVC5+EF6) [第二篇]ASP.NET MVC快速入门之数据注解(MVC5+EF6) [第三篇]ASP.NET MVC快速入门之安全策 ...

  5. iOS冰与火之歌(番外篇) - 基于PEGASUS(Trident三叉戟)的OS X 10.11.6本地提权

    iOS冰与火之歌(番外篇) 基于PEGASUS(Trident三叉戟)的OS X 10.11.6本地提权 蒸米@阿里移动安全 0x00 序 这段时间最火的漏洞当属阿联酋的人权活动人士被apt攻击所使用 ...

  6. 给深度学习入门者的Python快速教程 - 番外篇之Python-OpenCV

    这次博客园的排版彻底残了..高清版请移步: https://zhuanlan.zhihu.com/p/24425116 本篇是前面两篇教程: 给深度学习入门者的Python快速教程 - 基础篇 给深度 ...

  7. 可视化(番外篇)——在Eclipse RCP中玩转OpenGL

    最近在看有关Eclipse RCP方面的东西,鉴于Gephi是使用opengl作为绘图引擎,所以,萌生了在Eclipse RCP下添加画布,使用opengl绘图的想法,网上有博文详细介绍这方面的内容, ...

  8. 可视化(番外篇)——SWT总结

    本篇主要介绍如何在SWT下构建一个应用,如何安装SWT Designer并破解已进行SWT的可视化编程,Display以及Shell为何物.有何用,SWT中的常用组件.面板容器以及事件模型等. 1.可 ...

  9. 【重走Android之路】【番外篇】关于==和equals

    [重走Android之路][番外篇]关于==和equals   在实际的编程当中,经常会使用==和equals来判断变量是否相同.但是这两种比较方式也常常让人搞得云里雾里摸不着头脑.下面是我个人做的总 ...

随机推荐

  1. 洛谷P1047 校门外的树

    P1047 校门外的树 题目描述 某校大门外长度为L的马路上有一排树,每两棵相邻的树之间的间隔都是1米.我们可以把马路看成一个数轴,马路的一端在数轴0的位置,另一端在L的位置:数轴上的每个整数点,即0 ...

  2. [Xcode 实际操作]四、常用控件-(1)UIButton控件的使用

    目录:[Swift]Xcode实际操作 本文将演示按钮控件的使用,按钮是用户界面中最常见的交互控件 在项目导航区,打开视图控制器的代码文件[ViewController.swift] import U ...

  3. postgresql数据库linux下设置开机自启动

    设置PostgreSQL开机自启动PostgreSQL的开机自启动脚本位于PostgreSQL源码目录的contrib/start-scripts路径下cd /opt/soft_bak/postgre ...

  4. ldap第二天-yum安装LDAP + phpLDAPadmin

    1.安装LDAP服务器和客户端,migrationtools工具包 yum install -y openldap-servers openldap-clients migrationtools 2. ...

  5. CDN-内容发布网络

    整理<CDN技术详解>一书中重要的内容. 互联网与万维网 广义的互联网,由两层组成:一层是以TCP/IP为代表的网络层:另一层是以万维网WWW为代表的应用层.辨识互联网和万维网的区别,是认 ...

  6. 关于Markdown的一些学习笔记

    **关于Markdown的一些学习笔记** 一直利用markdown进行博客的文档编写,一方面是因为不需要特别注重排版,另一方面是十分的方便.最近突发奇想的认为,如果能运用到平时的作业或课程中,会不会 ...

  7. zabbix对tcp状态监控

    1.先编写一个获取tcp状态的脚本文件,脚本放在/usr/lib/zabbix/alertscripts/vim /usr/lib/zabbix/alertscripts/tcp_status.sh ...

  8. redis常用

    redis的key和string类型value限制均为512MB

  9. LeetCode 069 Sqrt(x) 求平方根

    Implement int sqrt(int x).Compute and return the square root of x.x is guaranteed to be a non-negati ...

  10. lazy load的一些网址

    http://www.gayadesign.com/scripts/queryLoader/ http://www.oschina.net/p/queryloader http://www.cnblo ...