题意

给一张$n\times m$二分图,带点权,问有多少完美匹配子集满足权值和大于等于$t$


这里有一个结论:对于二分图$\mathbb{A}$和$\mathbb{B}$集合,如果子集$A \in \mathbb{A},B \in \mathbb{B}$,且$A,B$分别是完美匹配的子集,那么$A \cup B$属于一个完美匹配

有了这个结论之后,考虑单侧,枚举子集$S$,利用霍尔定理判定$S$是否是完美匹配,并通过dp转移状态,记录下单侧所有满足条件的权值和,然后两侧一起考虑累加得到答案

时间复杂度$O((n+m)2^{max(n,m)})$

代码

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N = 1 << 20;
int n, m, a[N + 5], b[N + 5], cnt[N + 5], L[N + 5], R[N + 5], fl[N + 5], fr[N + 5], t;
char str[100][100];
vector<int> g1, g2;
int main() {
scanf("%d%d", &n, &m);
for(int i = 0; i < n; ++i) scanf("%s", str[i]);
for(int i = 0; i < n; ++i) scanf("%d", &a[i]);
for(int i = 0; i < m; ++i) scanf("%d", &b[i]);
for(int i = 0; i < n; ++i) {
for(int j = 0; j < m; ++j) {
if(str[i][j] == '1') {
L[i] |= (1 << j); R[j] |= (1 << i);
}
}
}
scanf("%d", &t);
for(int i = 0; i <= max((1 << n), (1 << m)); ++i) cnt[i] = cnt[i>>1] + (i & 1);
for(int s = 0; s < (1 << n); ++s) {
int now = 0, v = 0;
fl[s] = 1;
for(int i = 0; i < n; ++i) {
if((s >> i) & 1) {
v += a[i]; now |= L[i];
fl[s] &= fl[s ^ (1 << i)];
}
}
if(fl[s] && cnt[s] <= cnt[now]) g1.push_back(v);
else fl[s] = 0;
}
for(int s = 0; s < (1 << m); ++s) {
int now = 0, v = 0;
fr[s] = 1;
for(int i = 0; i < m; ++i) {
if((s >> i) & 1) {
v += b[i]; now |= R[i];
fr[s] &= fr[s ^ (1 << i)];
}
}
if(fr[s] && cnt[s] <= cnt[now]) g2.push_back(v);
else fr[s] = 0;
}
sort(g1.begin(), g1.end());
LL ans = 0;
for(int i = 0; i < g2.size(); ++i) {
ans += g1.size() - (lower_bound(g1.begin(), g1.end(), t - g2[i]) - g1.begin());
}
cout << ans << endl;
return 0;
}
/*
3 3
010
111
010
1 2 3
8 5 13
21
*/
/*
3 2
01
11
10
1 2 3
4 5
8
*/

【Codeforces】Gym 101173B Bipartite Blanket 霍尔定理+状压DP的更多相关文章

  1. Codeforces Gym 100610 Problem K. Kitchen Robot 状压DP

    Problem K. Kitchen Robot Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/10061 ...

  2. Educational Codeforces Round 13 E. Another Sith Tournament 状压dp

    E. Another Sith Tournament 题目连接: http://www.codeforces.com/contest/678/problem/E Description The rul ...

  3. Codeforces 1225G - To Make 1(bitset+状压 dp+找性质)

    Codeforces 题目传送门 & 洛谷题目传送门 还是做题做太少了啊--碰到这种题一点感觉都没有-- 首先我们来证明一件事情,那就是存在一种合并方式 \(\Leftrightarrow\) ...

  4. 『Exclusive Access 2 dilworth定理 状压dp』

    Exclusive Access 2 Description 给出 N 个点M 条边的无向图,定向得到有向无环图,使得最长路最短. N ≤ 15, M ≤ 100 Input Format 第一行一个 ...

  5. CF1103D Codeforces Round #534 (Div. 1) Professional layer 状压 DP

    题目传送门 https://codeforces.com/contest/1103/problem/D 题解 失去信仰的低水平选手的看题解的心路历程. 一开始看题目以为是选出一些数,每个数可以除掉一个 ...

  6. bzoj4903 & loj2264 [Ctsc2017]吉夫特 Lucas 定理+状压DP

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4903 https://loj.ac/problem/2264 http://uoj.ac/pr ...

  7. Codeforces 279D The Minimum Number of Variables 状压dp

    The Minimum Number of Variables 我们定义dp[ i ][ mask ]表示是否存在 处理完前 i 个a, b中存者 a存在的状态是mask 的情况. 然后用sosdp处 ...

  8. codeforces#580 D. Kefa and Dishes(状压dp)

    题意:有n个菜,每个菜有个兴奋值,并且如果吃饭第i个菜立即吃第j个菜,那么兴奋值加ma[i][j],求吃m个菜的最大兴奋值,(n<=18) 分析:定义dp[status][last],statu ...

  9. Codeforces Round #585 (Div. 2) E. Marbles(状压dp)

    题意:给你一个长度为n的序列 问你需要多少次两两交换 可以让相同的数字在一个区间段 思路:我们可以预处理一个数组cnt[i][j]表示把i放到j前面需要交换多少次 然后二进制枚举后 每次选择一个为1的 ...

随机推荐

  1. shell 获取文件名

    1.获取文件名并修改文件名 2.$@ 遍历参数 3.赋值要加"" 4.if 判断注意空格 else后面不能跟then

  2. 【BZOJ1109】[POI2007]堆积木Klo 二维偏序

    [BZOJ1109][POI2007]堆积木Klo Description Mary在她的生日礼物中有一些积木.那些积木都是相同大小的立方体.每个积木上面都有一个数.Mary用他的所有积木垒了一个高塔 ...

  3. One Person Game(概率+数学)

    There is a very simple and interesting one-person game. You have 3 dice, namelyDie1, Die2 and Die3.  ...

  4. JVM性能优化, Part 2 ―― 编译器

    作为JVM性能优化系列文章的第2篇,本文将着重介绍Java编译器,此外还将对JIT编译器常用的一些优化措施进行讨论(参见“JVM性能优化,Part 1″中对JVM的介绍).Eva Andreasson ...

  5. proguard 不混淆第三方jar包的问题

    导入lib文件,并且用-dontwarn 和 keep class结合试试,例如: -libraryjars libs/log4j.jar -dontwarn org.apache.log4j.*-k ...

  6. (转)Javascript模块化编程(二):AMD规范

    这个系列的第一部分介绍了Javascript模块的基本写法,今天介绍如何规范地使用模块. (接上文) 七.模块的规范 先想一想,为什么模块很重要? 因为有了模块,我们就可以更方便地使用别人的代码,想要 ...

  7. 基于卡方的独立性检验原理及R语言实现

    在读到<R语言实战>(第二版)P143页有关卡方独立性检验所记 假设检验 假设检验(Test of Hypothesis)又称为显著性检验(Test of Ststistical Sign ...

  8. lazyload.js参数说明

    lazyload.js是jQuery的一个插件,可以用来实现图片异步加载. lazyload插件如何添加参数: $("img").lazyload({ //参数添加到此位置,建议一 ...

  9. MYSQL:基础——3N范式的表结构设计

    基于3N范式的数据表设计 范式 设计关系数据库时,遵从不同的规范要求,设计出合理的关系型数据库,这些不同的规范要求被称为不同的范式,各种范式呈递次规范,越高的范式数据库冗余越小. 关系数据库现有六种范 ...

  10. 扣出thinkphp数据库操作类

    假如你是一位thinkphp的使用者,想必你会觉得thinkphp操作数据库非常方便.现在在你面前有一个非常小的作业,小到完全没有必要用thinkphp去完成它.但是你又觉得不用thinkphp的话, ...