一、MNIST数据集分类简单版本

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

#载入数据集
mnist = input_data.read_data_sets("MNIST_data",one_hot=True)

#每个批次的大小
batch_size = 100
#计算一共有多少个批次
n_batch = mnist.train.num_examples // batch_size

#定义两个placeholder
x = tf.placeholder(tf.float32,[None,784])
y = tf.placeholder(tf.float32,[None,10])

#创建一个简单的神经网络
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
prediction = tf.nn.softmax(tf.matmul(x,W)+b)

#二次代价函数
loss = tf.reduce_mean(tf.square(y-prediction))
#使用梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)

#初始化变量
init = tf.global_variables_initializer()

#结果存放在一个布尔型列表中
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置
#求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))

with tf.Session() as sess:
  sess.run(init)
  for epoch in range(21):
    for batch in range(n_batch):
      batch_xs,batch_ys = mnist.train.next_batch(batch_size)
      sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})

    acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
    print("Iter " + str(epoch) + ",Testing Accuracy " + str(acc))

MNIST数据集的更多相关文章

  1. Caffe初试(二)windows下的cafee训练和测试mnist数据集

    一.mnist数据集 mnist是一个手写数字数据库,由Google实验室的Corinna Cortes和纽约大学柯朗研究院的Yann LeCun等人建立,它有60000个训练样本集和10000个测试 ...

  2. 【Mxnet】----1、使用mxnet训练mnist数据集

    使用自己准备的mnist数据集,将0-9的bmp图像分别放到0-9文件夹下,然后用mxnet训练. 1.制作rec数据集 (1).制作list

  3. 从零到一:caffe-windows(CPU)配置与利用mnist数据集训练第一个caffemodel

    一.前言 本文会详细地阐述caffe-windows的配置教程.由于博主自己也只是个在校学生,目前也写不了太深入的东西,所以准备从最基础的开始一步步来.个人的计划是分成配置和运行官方教程,利用自己的数 ...

  4. 使用libsvm对MNIST数据集进行实验

    使用libsvm对MNIST数据集进行实验 在学SVM中的实验环节,老师介绍了libsvm的使用.当时看完之后感觉简单的说不出话来. 1. libsvm介绍 虽然原理要求很高的数学知识等,但是libs ...

  5. mnist数据集转换bmp图片

    Mat格式mnist数据集下载地址:http://www.cs.nyu.edu/~roweis/data.html Matlab转换代码: load('mnist_all.mat'); type = ...

  6. caffe在windows编译project及执行mnist数据集測试

    caffe在windows上的配置和编译能够參考例如以下的博客: http://blog.csdn.net/joshua_1988/article/details/45036993 http://bl ...

  7. 使用caffe训练mnist数据集 - caffe教程实战(一)

    个人认为学习一个陌生的框架,最好从例子开始,所以我们也从一个例子开始. 学习本教程之前,你需要首先对卷积神经网络算法原理有些了解,而且安装好了caffe 卷积神经网络原理参考:http://cs231 ...

  8. 实践详细篇-Windows下使用VS2015编译的Caffe训练mnist数据集

    上一篇记录的是学习caffe前的环境准备以及如何创建好自己需要的caffe版本.这一篇记录的是如何使用编译好的caffe做训练mnist数据集,步骤编号延用上一篇 <实践详细篇-Windows下 ...

  9. 学习TensorFlow,邂逅MNIST数据集

    如果说"Hello Word!"是程序员的第一个程序,那么MNIST数据集,毫无疑问是机器学习者第一个训练的数据集,本文将使用Google公布的TensorFLow来学习训练MNI ...

  10. Python实现bp神经网络识别MNIST数据集

    title: "Python实现bp神经网络识别MNIST数据集" date: 2018-06-18T14:01:49+08:00 tags: [""] cat ...

随机推荐

  1. css隐藏滚动条、移动端滚动卡顿的解决

    1.如果想保持容器能够滚动,同时不想看到丑陋的滚动条,chrome.firefox和移动端上不考虑兼容性直接 element::-webkit-scrollbar{ display:none } 2. ...

  2. Wanafly 挑战赛 14 E 无效位置 (线性基+并查集)

    Wanafly 挑战赛 14 E 无效位置 (线性基+并查集) 传送门:https://ac.nowcoder.com/acm/contest/81/#question 题意: n个数,m次操作 一个 ...

  3. org.apache.subversion.javahl.ClientException: Item is not readable 解决办法

    在使用eclise安装的插件subclipse查看svn的提交历史记录的时候,提示org.apache.subversion.javahl.ClientException: Item is not r ...

  4. 选题Scrum立会报告+燃尽图 02

    此作业要求参见:https://edu.cnblogs.com/campus/nenu/2019fall/homework/8680 组长:杨天宇 组员:魏新,罗杨美慧,王歆瑶,徐丽君 组名:组长 第 ...

  5. 轻松搭建基于 SpringBoot + Vue 的 Web 商城应用

    背景介绍 首先介绍下在本文出现的几个比较重要的概念: 函数计算(Function Compute): 函数计算是一个事件驱动的服务,通过函数计算,用户无需管理服务器等运行情况,只需编写代码并上传.函数 ...

  6. 从头学pytorch(十一):自定义层

    自定义layer https://www.cnblogs.com/sdu20112013/p/12132786.html一文里说了怎么写自定义的模型.本篇说怎么自定义层. 分两种: 不含模型参数的la ...

  7. MSXM简单的使用

    // xml.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <string> #include <at ...

  8. $[NOIp2017]$ 宝藏 状压$dp$

    \(Sol\) 觉得这里是个很巧妙的地方吖,就是记下当前扩展点集的最大深度,然后强制下一步扩展的点集都是最大深度+1.这样做在当前看可能会导致误算答案导致答案偏大,但是整个\(dp\)完成后一定可以得 ...

  9. Linux三剑客之sed的基本用法介绍

    [介绍] sed是一款强大的非交互式的文本编辑器,可以对文件文本进行增删改查的相关操作,本文主要是讲解以下sed的基本用法. [常用选项] -e 下一个参数为一个sed指令,一般只会用于同一行有多个s ...

  10. Python 打包的现状:包的三种类型

    英文 | The state of Python Packaging[1] 原作 | BERNAT GABOR 译者 | 豌豆花下猫 声明 :本文获得原作者授权翻译,转载请保留原文出处,请勿用于商业或 ...