eye 单位矩阵
zeros 全零矩阵
ones 全1矩阵
rand 均匀分布随机阵
genmarkov 生成随机Markov矩阵
linspace 线性等分向量
logspace 对数等分向量
logm 矩阵对数运算
cumprod 矩阵元素累计乘
cumsum 矩阵元素累计和
toeplitz Toeplitz矩阵
disp 显示矩阵和文字内容
length 确定向量的长度
size 确定矩阵的维数
diag 创建对角矩阵或抽取对角向量
find 找出非零元素1的下标
matrix 矩阵变维
rot90 矩阵逆时针旋转90度
sub2ind 全下标转换为单下标
tril 抽取下三角阵
triu 抽取上三角阵
conj 共轭矩阵
companion 伴随矩阵
det 行列式的值
norm 矩阵或向量范数
nnz 矩阵中非零元素的个数
null 清空向量或矩阵中的某个元素
orth 正交基
rank 矩阵秩
trace 矩阵迹
cond 矩阵条件数
inv 矩阵的逆
rcond 逆矩阵条件数
lu LU分解或高斯消元法
pinv 伪逆
qr QR分解
givens Givens变换
linsolve 求解线性方程
lyap Lyapunov方程
hess Hessenberg矩阵
poly 特征多项式
schur Schur分解
expm 矩阵指数
expm1 矩阵指数的Pade逼近
expm2 用泰勒级数求矩阵指数
expm3 通过特征值和特征向量求矩阵指数
funm 计算一般矩阵函数
logm 矩阵对数
sqrtm 矩阵平方根

spec 矩阵特征值
gspec 矩阵束特征值
bdiag 块矩阵,广义特征向量
eigenmar- 正则化Markov特征
kov 向量
pbig 特征空间投影
svd 奇异值分解
sva 奇异值分解近似

cumprod 元素累计积
cumsum 元素累计和
hist 统计频数直方图
max 最大值
min 最小值
mean 平均值
median 中值
prod 元素积
sort 由大到小排序
std 标准差
sum 元素和
trapz 梯形数值积分
corr 求相关系数或方差

sparse 稀疏矩阵
adj2sp 邻接矩阵转换为稀疏矩阵
full 稀疏矩阵转换为全矩阵
mtlb_sparse 将scilab稀疏矩阵转换为matlab稀疏矩阵格式
sp2adj 将稀疏矩阵转换为邻接矩阵
speye 稀疏矩阵方式单位矩阵
sprand 稀疏矩阵方式随机矩阵
spzeros 稀疏矩阵方式全零阵
lufact 稀疏矩阵LU分解
lusolve 稀疏矩阵方程求解
spchol 稀疏矩阵Cholesky分解

关于稀疏矩阵的Matlab命令集,供查阅参考。
基本稀疏矩阵
spdiags :生成稀疏带状矩阵
speye :单位稀疏矩阵
sprand :随机稀疏矩阵
sprandn :正态分布的随机稀疏矩阵
sprandsym:生成稀疏对称随机矩阵

满阵和稀疏矩阵的转换
find :寻找非零元素下标和值
full :稀疏矩阵转化为满阵
sparse :生成稀疏矩阵
spconvert:载入稀疏矩阵

稀疏矩阵的非零元素操作
nnz :非零元素个数
nonzeros :矩阵中的非零元素
nzmax :为非零元素分配的存储空间数
spalloc :稀疏矩阵存储空间
spfun :稀疏矩阵中非零元素的函数计算
spones :非零元素全部用1替换

稀疏矩阵的可视化
spy :稀疏矩阵的图形表示

排序算法
colmmd :进行列的最小度排序
colperm :基于非零算法排序
dmperm :Dulmage-Mendelsohn分解
randperm:随机置换
symmmd :对称最小度排序
symrcm :反向Cuthill-McKee排序

范数、条件数和秩
condest :I范数矩阵条件数
normest :2范数估计

线性方程的稀疏系统
bicg :双共扼梯度法
bicgstab:双共扼梯度稳定法
cgs :二次共扼梯度法
cholinc :不完全Cholesky分解
cholupdate:Cholesky分解的秩1修正
gmres :广义最小残差法
luinc :不完全的LU分解
pcg :预处理共扼梯度法
qmr :Quasi_Minimal残差法

稀疏矩阵的特征值和奇异值
eigs :少数特征值和特征向量
svds :少数奇异值

杂项函数
spparms :设置稀疏矩阵程序的参数排序算法
colmmd :进行列的最小度排序
colperm :基于非零算法排序
dmperm :Dulmage-Mendelsohn分解
randperm:随机置换
symmmd :对称最小度排序
symrcm :反向Cuthill-McKee排序

Matlab 稀疏矩阵函数的更多相关文章

  1. Matlab编程-矩阵函数

    (1) are函数 功能:求解Riccati方程的解 Riccati方程的一般形式:A^TX+XA-XBX+C=0 (2)blkdiag函数 函数功能:a=blkdiag(a1,a2,a3,…)表示生 ...

  2. Matlab学习笔记(五)

    三.矩阵运算 (一)矩阵函数和特殊矩阵 常见的矩阵处理函数 表3-1    常见的矩阵函数 函数 说明 /或\ 矩阵除法中的左除或右除,可以用于求解线性方程组 accumarray(ind,val) ...

  3. MATLAB基础函数命令

    1. 常用命令 dir:列出当前目录下的所有文件 clc:清除命令窗 clear all:清除环境(从内存中清除所有变量) who:将内存中的当前变量以简单形式列出 close all: 关闭所有的 ...

  4. 在matlab和opencv中分别实现稀疏表示

    在本文中,稀疏表示的原理不再具体讲解,有需要的同学请自行百度. 本文采用OMP算法来求解稀疏系数.首先随机生成字典数据和待测试数据 字典数据: dic =[ 6, 7, 9, 9, 7, 0, 6, ...

  5. 稀疏表示字典的显示(MATLAB实现代码)

    本文主要是实现论文--基于稀疏表示的图像超分辨率<Image Super-Resolution Via Sparse Representation>中的Figure2.通过对100000个 ...

  6. matlab中的常用的函数——在稀疏表示中学习到的

    1, 矩阵的逆: inv()函数: 2. 矩阵的伪逆: pinv()函数: 3. 矩阵的克罗内克尔积: kron()函数: 4. 得到一个dct变换的字典: dctmtx()函数, 它可以得到一个 n ...

  7. Matlab 矩阵函数

    clear; clc; A = rand() cond(A) %求矩阵A的条件数 Det(A) %求方阵A的行列式 Dot(A,B) %矩阵A与B的点积 Eig(A) %方阵A的特征值和特征向量 No ...

  8. MATLAB命令大全

    一.常用对象操作:除了一般windows窗口的常用功能键外.1.!dir 可以查看当前工作目录的文件. !dir& 可以在dos状态下查看.2.who 可以查看当前工作空间变量名, whos ...

  9. Matlab与C/C++联合编程之Matlab以MEX方式调用C/C++代码(二)

    如果我有一个用C语言写的函数,实现了一个功能,如一个简单的函数: double add(double x, double y) { return x + y; } 现在我想要在Matlab中使用它,比 ...

随机推荐

  1. pycharm使用教程链接+部分练习题01

    pycharm安装: https://www.cnblogs.com/jin-xin/articles/9811379.html pycharm使用教程: https://edu.51cto.com/ ...

  2. 搞了一宿,弄完了一个POP3协议

    POP3协议和SMTP协议都会了,加上PE文件的读写,APIHOOK,以及远程进程注入,我是不是就可以写个简单点的通过邮件传播的蠕虫病毒了,哈哈哈哈哈哈. 感觉POP3协议挺简单的,比那个该死的SMT ...

  3. css 渐变背景

    background: linear-gradient(left,#fa7f6d, #fc5e7f); left: 从左边开始

  4. 网络结构解读之inception系列二:GoogLeNet(Inception V1)

    网络结构解读之inception系列二:GoogLeNet(Inception V1) inception系列的开山之作,有网络结构设计的初期思考. Going deeper with convolu ...

  5. windows 遍历目录下的所有文件 FindFirstFile FindNextFile

    Windows下遍历文件时用到的就是FindFirstFile 和FindNextFile 首先看一下定义: HANDLE FindFirstFile( LPCTSTR lpFileName, // ...

  6. css-文本两行或多行文本溢出显示省略号(转)

    转自:http://www.daqianduan.com/6179.html  感谢作者 1.单行文本的溢出显示省略号 overflow: hidden; text-overflow:ellipsis ...

  7. php冒泡算法

    1.冒泡算法 网上搜了很多,但是总是对于每次循环的边界值思路讲的比较笼统. 不是很容易被新手记住,我自己平时也是硬记下来的. 但是对于算法,硬记,时间长了还是容易忘记,所以自己写了一次,把每次思路尽量 ...

  8. CF集萃3

    CF1118F2 - Tree Cutting 题意:给你一棵树,每个点被染成了k种颜色之一或者没有颜色.你要切断恰k - 1条边使得不存在两个异色点在同一连通块内.求方案数. 解:对每颜色构建最小斯 ...

  9. BZOJ 2165: 大楼

    Time Limit: 40 Sec Memory Limit: 259 MB Submit: 957 Solved: 353 [Submit][Status][Discuss] Descriptio ...

  10. .h头文件 .lib动态链接库文件 .dll 动态链接库

    (1).h头文件是编译时必须的,lib是链接时需要的,dll是运行时需要的. 附加依赖项的是.lib 不是.dll 若生成了DLL ,则肯定也生成 LIB文件 如果要完成源代码的编译和链接,有头文件和 ...