Wannafly Camp 2020 Day 1I K小数查询 - 分块
给你一个长度为\(n\)序列\(A\),有\(m\)个操作,操作分为两种:
- 输入\(x,y,c\),表示对\(i\in[x,y]\),令\(A_{i}=min(A_{i},c)\)
- 输入\(x,y,k\),表示询问区间 \([x,y]\) 中的第\(k\)小数
Solution
考虑分块,块内排序,同时记录这一块被整体取过的 \(min\) 的最小值
对于修改,对不完整的块,我们直接暴力在原序列上修改然后重建块,标记不动
对完整的块,只修改标记
这样修改的时间复杂度为 \(O(k \log k)\),其中 \(k\) 为块大小
对于询问,我们二分答案,考虑检验,在每个完整的块上统计需要检查标记,如果标记比当前枚举的值小则直接计数,否则在块上再次二分;对于不完整的块,检查标记并在序列上暴力查询即可。查询时间复杂度的宽界为 \(O(\frac{n}{k} \log k \log V)\)
求解根号平衡,\(k = \frac{n}{k} \log V\),得 \(k = \sqrt{n \log V}\),考虑到 \(V \leq 10^9\),取 \(k=\sqrt{30n}\) ,实际上由于常数问题,\(k\)取 \(\sqrt{3n}\) 即可
#include <bits/stdc++.h>
using namespace std;
const int N = 1005;
const int inf = 1e+9+7;
vector <int> b[N];
int n, m, a[N*N], bel[N*N], bl[N], br[N], tag[N], K, tot;
void build() {
K = sqrt(3*n);
for(int i=1;i<=n;i++) bel[i] = i/K+1;
for(int i=1;i<=n;i++) br[bel[i]]=i;
for(int i=n;i>=1;i--) bl[bel[i]]=i;
for(int i=1;i<=n;i++) b[bel[i]].push_back(a[i]);
for(int i=1;i<=n;i++) tot = max(tot,bel[i]);
for(int i=1;i<=tot;i++) tag[i] = inf;
for(int i=1;i<=tot;i++) sort(b[i].begin(), b[i].end());
}
void modify_part(int l,int r,int x) {
int id = bel[l];
for(int i=l;i<=r;i++) a[i] = min(a[i],x);
b[id].clear();
for(int i=bl[id];i<=br[id];i++) b[id].push_back(a[i]);
sort(b[id].begin(), b[id].end());
}
void modify(int l,int r,int x) {
for(int i=bel[l]+1;i<bel[r];i++) tag[i] = min(tag[i],x);
if(bel[l] == bel[r]) { // !!
modify_part(l, r, x);
}
else {
modify_part(l, br[bel[l]], x);
modify_part(bl[bel[r]], r, x);
}
}
int check_part(int l,int r,int x) {
if(tag[bel[l]]<=x) return r-l+1;
int ans = 0;
for(int i=l;i<=r;i++) ans += a[i]<=x?1:0;
return ans;
}
int check_block(int i,int x) {
if(tag[i]<=x) return br[i]-bl[i]+1;
return upper_bound(b[i].begin(),b[i].end(),x) - b[i].begin();
}
int check(int l,int r,int x) {
int ans = 0;
for(int i=bel[l]+1;i<bel[r];i++) ans += check_block(i,x);
if(bel[l]==bel[r]) { // !!
ans = check_part(l, r, x);
}
else {
ans += check_part(l, br[bel[l]], x);
ans += check_part(bl[bel[r]], r, x);
}
return ans;
}
int query(int ql,int qr,int k) {
int l=1, r=1e9+1;
while(l<r) {
int mid = (l+r)/2;
if(check(ql,qr,mid) < k) l=mid+1;
else r=mid;
}
return l;
}
int main() {
ios::sync_with_stdio(false);
cin>>n>>m;
for(int i=1;i<=n;i++) cin>>a[i];
build();
for(int i=1;i<=m;i++) {
int t1,t2,t3,t4;
cin>>t1>>t2>>t3>>t4;
if(t1==1) {
modify(t2,t3,t4);
}
if(t1==2) {
cout<<query(t2,t3,t4)<<endl;
}
}
}
Wannafly Camp 2020 Day 1I K小数查询 - 分块的更多相关文章
- 2020 CCPC Wannafly Winter Camp Day1 - I. K小数查询(分块)
题目链接:K小数查询 题意:给你一个长度为$n$序列$A$,有$m$个操作,操作分为两种: 输入$x,y,c$,表示对$i\in[x,y] $,令$A_{i}=min(A_{i},c)$ 输入$x,y ...
- Wannafly Winter Camp 2020 Day 6J K重排列 - dp
求 \(K\) 是多少个 \(n\) 元置换的周期.\(T\leq 100, n\leq 50, K \leq 10^{18}\) Solution 置换可以被试做若干个环组成的有向图,于是考虑 dp ...
- Wannafly Camp 2020 Day 3I N门问题 - 概率论,扩展中国剩余定理
有一个猜奖者和一个主持人,一共有 \(n\) 扇门,只有一扇门后面有奖,主持人事先知道哪扇门后有奖,而猜奖者不知道.每一轮,猜奖者选择它认为的有奖概率最大(如果有多个最大,随机选一个)的一扇门,主持人 ...
- Wannafly Camp 2020 Day 3F 社团管理 - 决策单调性dp,整体二分
有 \(n\) 个数构成的序列 \({a_i}\),要将它划分为 \(k\) 段,定义每一段的权值为这段中 \((i,j) \ s.t. \ i<j,\ a_i=a_j\) 的个数,求一种划分方 ...
- Wannafly Camp 2020 Day 2B 萨博的方程式 - 数位dp
给定 \(n\) 个数 \(m_i\),求 \((x_1,x_2,...,x_n)\) 的个数,使得 \(x_1 \ xor\ x_2\ xor\ ...\ xor\ x_n = k\),且 \(0 ...
- Wannafly Camp 2020 Day 1D 生成树 - 矩阵树定理,高斯消元
给出两幅 \(n(\leq 400)\) 个点的无向图 \(G_1 ,G_2\),对于 \(G_1\) 的每一颗生成树,它的权值定义为有多少条边在 \(G_2\) 中出现.求 \(G_1\) 所有生成 ...
- Wannafly Camp 2020 Day 2I 堡堡的宝藏 - 费用流
感谢这道题告诉我KM求的是 完备 最大权匹配 :( #include <bits/stdc++.h> using namespace std; #define reset(x) memse ...
- Wannafly Camp 2020 Day 1C 染色图 - 组合数学,整除分块
定义一张无向图 G=⟨V,E⟩ 是 k 可染色的当且仅当存在函数 f:V↦{1,2,⋯,k} 满足对于 G 中的任何一条边 (u,v),都有 f(u)≠f(v). 定义函数 g(n,k) 的值为所有包 ...
- Wannafly Camp 2020 Day 6M 自闭 - 模拟
按题意模拟,又乱又烦,没什么可说的 #include <bits/stdc++.h> using namespace std; #define int long long int n,m, ...
随机推荐
- Codeforces 1301B Motarack's Birthday(二分)
题目链接:http://codeforces.com/problemset/problem/1301/B 思路: (1)都是-1的情况 (2)只有一个除-1之外的数 (3)至少有两个除-1之外的不同的 ...
- opencv —— findContours、drawContours 寻找并绘制轮廓
轮廓图像与 Canny 图像的区别 一个轮廓一般对应一系列的点,也就是图像中的一条曲线.轮廓图像和 Canny 图像乍看起来表现几乎是一致的,但其实组成两者的数据结构差别很大: Canny 边缘图像是 ...
- Git的基本使用 -- 文件的添加、撤销、对比、删除
显示当前工作区.暂存区.仓库的状态 git status 当工作区的所有文件都提交到仓库,并和仓库保持一致时 有修改的文件时,会显示有改动的文件,并提示如何提交这些修改 添加到暂存区,还未提交到仓库时 ...
- visual studio 2019:error c2760
笔者在敲书上的练习题时(完全按照书上代码,没有语法错误),报"error c2760"错误. 代码出错位置(代码并没有问题): 在网上查找了一下,发现"c2760&quo ...
- JS事件流、DOM事件流、IE事件处理、跨浏览器事件处理、事件对象与类型
事件的移除 removeEventListener() 第二个参数需要指定要移除的事件句柄,不能是匿名函数,因为无法识别 想要移除成功,那么三个参数必须跟addEventListener中的三个完全一 ...
- vue2.0嵌套组件之间的通信($refs,props,$emit)
vue的一大特色就是组件化,所以组件之间的数据交互是非常重要,而我们经常使用组件之间的通信的方法有:props,$refs和emit. 初识组件之间的通信的属性和方法 props的使用 子组件使用父组 ...
- 剑指offer-面试题60-n个骰子的点数-动态规划
/* 题目: 计算n个骰子,出现和s的概率. */ #include<iostream> #include<cstdlib> #include<stack> #in ...
- exp导出含有双引号的表
由于ORACLE默认的表名都是不区分大小写,在创建表时,在数据字典中存储的表名为大写.在有些情况下,如果创建的表在表名上加上双引号("),则创建的表其表名在数据字典中不作转换.比如 SQL& ...
- 取Cookie值
string url_Login_Group = "http://ui.ptlogin2.qq.com/cgi-bin/login?appid=549000912&daid=5&am ...
- JS函数深入
函数的本质是对象 三种定义方式 1. 字面量=function声明 function add() { // body... } add(); 2. var赋值表达式 var add = funct ...