题目描述

已知 n 个整数 x1,x2,…,xn,以及一个整数 k(k<n)。从 n 个整数中任选 k 个整数相加,可分别得到一系列的和。例如当 n=4,k=3,4 个整数分别为 3,7,12,19 时,可得全部的组合与它们的和为:

3+7+12=22

3+7+19=29

7+12+19=38

3+12+19=34。

现在,要求你计算出和为素数共有多少种。

例如上例,只有一种的和为素数:3+7+19=29)。

输入输出格式

输入格式:

键盘输入,格式为:

n , k (1<=n<=20,k<n)

x1,x2,…,xn (1<=xi<=5000000)

输出格式:

屏幕输出,格式为:

一个整数(满足条件的种数)。

输入输出样例

输入样例#1: 复制

4 3
3 7 12 19
输出样例#1: 复制

1

【代码】:
#include<cstdio>
#include<cmath>
using namespace std;
const int maxn = ;
int a[maxn];
int ans,n,k;
bool isprime(int num)
{
for(int i=;i<=sqrt(num);i++)
if(num%i==)
return false;
return true;
}
void dfs(int cur,int cnt,int num)//一个传递当前选择的数的下标,一个传递已选择数的个数,一个选择以选择的数的总和
{
if(cnt==k)
{
if(isprime(num))
{
ans++;
}
return ;
}
for(int i=cur;i<=n;i++)
{
dfs(i+,cnt+,num+a[i]);
}
}
int main()
{
//freopen("choose.in","r",stdin);
//freopen("choose.out","w",stdout);
scanf("%d%d",&n,&k);
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
dfs(,,);
printf("%d\n",ans);
return ;
}

洛谷 P1036 选数【背包型DFS/选or不选】的更多相关文章

  1. 洛谷 p1123 取数游戏【dfs】

    题目链接:https://www.luogu.org/problemnew/show/P1123 转载于:>>>>>> 题目描述 一个N×M的由非负整数构成的数字矩 ...

  2. 洛谷P1102 A-B数对

    洛谷P1102 A-B数对 https://www.luogu.org/problem/show?pid=1102 题目描述 出题是一件痛苦的事情! 题目看多了也有审美疲劳,于是我舍弃了大家所熟悉的A ...

  3. 洛谷P1288 取数游戏II(博弈)

    洛谷P1288 取数游戏II 先手必胜的条件需要满足如下中至少 \(1\) 条: 从初始位置向左走到第一个 \(0\) 的位置,经过边的数目为偶数(包含 \(0\) 这条边). 从初始位置向右走到第一 ...

  4. 洛谷 P1858 多人背包 DP

    目录 题面 题目链接 题目描述 输入输出格式 输入格式 输出格式 输入输出样例 输入样例 输出样例 说明 思路 AC代码 题面 题目链接 洛谷 P1858 多人背包 题目描述 求01背包前k优解的价值 ...

  5. 洛谷P1036 选数 题解 简单搜索/简单状态压缩枚举

    题目链接:https://www.luogu.com.cn/problem/P1036 题目描述 已知 \(n\) 个整数 \(x_1,x_2,-,x_n\) ,以及 \(1\) 个整数 \(k(k& ...

  6. 【搜索】【入门】洛谷P1036 选数

    题目描述 已知 n个整数x1​,x2​,…,xn​,以及1个整数k(k<n).从nn个整数中任选kk个整数相加,可分别得到一系列的和. 例如当n=4,k=3,4个整数分别为3,7,12,19时, ...

  7. 【洛谷p1036】选数

    (一定要声明我太蒟了,这个题扣了一上午……) 算法标签: …… dfs真的不是我所擅长的qwq,这道题的思路其实很简单,就是先dfs搜索所有可能的和,然后判断是不是质数.说着好说,然鹅并不好写: 第一 ...

  8. 洛谷 P1219 八皇后【经典DFS,温习搜索】

    P1219 八皇后 题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序 ...

  9. 洛谷P1219 :八皇后(DFS+回溯)

    题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序列2 4 6 1 3 ...

  10. 洛谷 P5206 - [WC2019]数树(集合反演+NTT)

    洛谷题面传送门 神仙多项式+组合数学题,不过还是被我自己想出来了( 首先对于两棵树 \(E_1,E_2\) 而言,为它们填上 \(1\sim y\) 使其合法的方案数显然是 \(y\) 的 \(E_1 ...

随机推荐

  1. 从微服务治理的角度看RSocket、. Envoy和. Istio

    很多同学看到这个题目,一定会提这样的问题:RSocket是个协议,Envoy是一个 proxy,Istio是service mesh control plane + data plane. 这三种技术 ...

  2. 淼一淼A+B problem

    鲁迅:这可是道难题呢! 鲁迅:我没说过这话,不过确实在理. 某改题毕,但见LOJ之上有数「A+B」之AC记录.余亦尝闻A+B之趣味无穷,遂兴起而码之. 少顷,AC之,吾心所畅. #include< ...

  3. htaccess apache重定向学习

    1.推荐博客:http://www.cnblogs.com/adforce/archive/2012/11/23/2784664.html 2.测试工具:https://htaccess.madewi ...

  4. 前端面试题之一JAVASCRIPT(理论类)

    一.请描述一下 cookies.sessionstorage .localstorage 和session的区别?(1)cookie是网站为了标示用户身份而储存在用户本地终端(client side) ...

  5. Android基础控件TextView

    1.常用属性 <TextView android:id="@+id/text11" //组件id android:layout_width="match_paren ...

  6. JeecgBoot 2.1.1 代码生成器AI版本发布,基于SpringBoot+AntDesign的JAVA快速开发平台

    此版本重点升级了 Online 代码生成器,支持更多的控件生成,所见即所得,极大的提高开发效率:同时做了数据库兼容专项工作,让 Online 开发兼容更多数据库:Mysql.SqlServer.Ora ...

  7. 《DSP using MATLAB》Problem 7.35

    代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output In ...

  8. 已发布的jsp项目如何在本地展示

    已发布的项目可以放到tomcat 安装目录下的webapps/下面,但是有时候我们的目录已经放好了,所在要加映射过去. 1, 到tomcat/conf/下,打开server.xml 2, 找到 < ...

  9. LUOGU P3047 [USACO12FEB]附近的牛Nearby Cows

    传送门 解题思路 树形dp,看到数据范围应该能想到是O(nk)级别的算法,进而就可以设出dp状态,dp[x][j]表示以x为根的子树,距离它为i的点的总和,第一遍dp首先自底向上,dp出每个节点的子树 ...

  10. LA3983 Robotruck

    虫洞 单调队列优化DP,感觉比较套路?上不去Vjudge,也懒得打就随便口胡一下.sxy大佬要是您看的我要是扯淡麻烦提醒我一下QAQ sum[i]表示从0到i依次走的距离,sg[i]表示1~i的重量和 ...