视觉slam十四讲课后习题ch3--5题
题目回顾:
假设有一个大的Eigen矩阵,我想把它的左上角3x3块提取出来,然后赋值为I3x3。编程实现.
解:提取大矩阵左上角3x3矩阵,有两种方式:
1、直接从0-2循环遍历大矩阵的前三行和三列
2、用矩阵变量.block(0,0,3,3)//从左上角00位置开始取3行3列
具体代码实现:
#include<iostream> /*提取大矩阵左上角3x3矩阵,有两种方式:
1、直接从0-2循环遍历大矩阵的前三行和三列
2、用矩阵变量.block(0,0,3,3)//从左上角00位置开始取3行3列
*/ //包含Eigen头文件
#include<Eigen/Core>
#include<Eigen/Geometry> #define MATRIX_SIZE 30
using namespace std; int main(int argc,char **argv)
{
//设置输出小数点后3位
cout.precision();
Eigen::Matrix<double,MATRIX_SIZE, MATRIX_SIZE> matrix_NN = Eigen::MatrixXd::Random(MATRIX_SIZE,MATRIX_SIZE);
Eigen::Matrix<double,,>matrix_3d1 = Eigen::MatrixXd::Random(,);//3x3矩阵变量
Eigen::Matrix3d matrix_3d = Eigen::Matrix3d::Random();//两种方式都可以
/*方法1:循环遍历矩阵的三行三列 */
for(int i = ;i < ; i ++){
for(int j = ;j < ;j++){
matrix_3d(i,j) = matrix_NN(i,j);
cout<<matrix_NN(i,j)<<" ";
}
cout<<endl;
}
matrix_3d = Eigen::Matrix3d::Identity();
cout<<"赋值后的矩阵为:"<<matrix_3d<<endl; /*方法2:用.block函数 */
/*
cout<<"提取出来的矩阵块为:"<<endl;
cout<< matrix_NN.block(0,0,3,3) <<endl; //提取后赋值为新的元素
matrix_3d = matrix_NN.block(0,0,3,3);
matrix_3d = Eigen::Matrix3d::Identity();
cout<<"赋值后的矩阵为:"<<endl<<matrix_3d;
*/
return ;
}
视觉slam十四讲课后习题ch3--5题的更多相关文章
- 视觉slam十四讲课后习题ch3-7
题目回顾: 设有小萝卜一号和小萝卜二号位于世界坐标系中,小萝卜一号的位姿为:q1=[0.35,0.2,0.3,0.1],t2=[0.3,0.1,0.1]^T (q的第一项为实部.请你把q归一化后在进行 ...
- 《视觉SLAM十四讲课后作业》第二讲
1.设线性⽅程 Ax = b,在 A 为⽅阵的前提下,请回答以下问题:1. 在什么条件下,x 有解且唯⼀? 非齐次线性方程在A的秩与[A|B]的秩相同时方程有解,当R(A)=R(A,B)=n时方程有唯 ...
- 《视觉SLAM十四讲课后作业》第一讲
1. 如何在 Ubuntu 中安装软件(命令⾏界⾯)?它们通常被安装在什么地⽅? 答:一般有两种安装方式(1)apt-get install (2)dpkg -i package.deb.系统软件一般 ...
- 视觉slam十四讲第七章课后习题7
版权声明:本文为博主原创文章,转载请注明出处:http://www.cnblogs.com/newneul/p/8544369.html 7.题目要求:在ICP程序中,将空间点也作为优化变量考虑进来 ...
- 视觉slam十四讲第七章课后习题6
版权声明:本文为博主原创文章,转载请注明出处: http://www.cnblogs.com/newneul/p/8545450.html 6.在PnP优化中,将第一个相机的观测也考虑进来,程序应如何 ...
- 浅读《视觉SLAM十四讲:从理论到实践》--操作1--初识SLAM
下载<视觉SLAM十四讲:从理论到实践>源码:https://github.com/gaoxiang12/slambook 第二讲:初识SLAM 2.4.2 Hello SLAM(书本P2 ...
- 高博-《视觉SLAM十四讲》
0 讲座 (1)SLAM定义 对比雷达传感器和视觉传感器的优缺点(主要介绍视觉SLAM) 单目:不知道尺度信息 双目:知道尺度信息,但测量范围根据预定的基线相关 RGBD:知道深度信息,但是深度信息对 ...
- 《视觉SLAM十四讲》第2讲
目录 一 视觉SLAM中的传感器 二 经典视觉SLAM框架 三 SLAM问题的数学表述 注:原创不易,转载请务必注明原作者和出处,感谢支持! 本讲主要内容: (1) 视觉SLAM中的传感器 (2) 经 ...
- 《视觉SLAM十四讲》第1讲
目录 一 视觉SLAM 注:原创不易,转载请务必注明原作者和出处,感谢支持! 一 视觉SLAM 什么是视觉SLAM? SLAM是Simultaneous Localization and Mappin ...
随机推荐
- 使用EF操作Docker中的Mysql实例
为啥我会选择mysql呢?因为我的服务器配置较低,而SqlServer在docker中的实例,服务器的运行内存应当保持在2G+,我没有这个条件,它会爆出这样的错误 sqlservr: This pro ...
- 「Vijos 1283」「OIBH杯NOIP2006第二次模拟赛」佳佳的魔杖
佳佳的魔杖 背景 配制成功了珍贵的0号药水,MM的病治好了.轻松下来的佳佳意外的得到了一个好东西--那就是--一种非常珍贵的树枝.这些树枝可以用来做优质的魔杖!当然了,不能只做自己的,至少还要考虑到M ...
- Okhttp解析—Okhttp概览
Okhttp解析-Okhttp概览 Okhttp作为目前Android使用最为广泛的网络框架之一,我们有必要去深入了解一下,本文是Okhttp解析的第一篇,主要是从宏观上认识Okhttp整个架构是如何 ...
- (数据科学学习手札72)用pdpipe搭建pandas数据分析流水线
1 简介 在数据分析任务中,从原始数据读入,到最后分析结果出炉,中间绝大部分时间都是在对数据进行一步又一步的加工规整,以流水线(pipeline)的方式完成此过程更有利于梳理分析脉络,也更有利于查错改 ...
- 【一起学源码-微服务】Eureka+Ribbon+Feign阶段性总结
前言 想说的话 这里已经梳理完Eureka.Ribbon.Feign三大组件的基本原理了,今天做一个总结,里面会有一个比较详细的调用关系流程图. 说明 原创不易,如若转载 请标明来源! 博客地址:一枝 ...
- BFS - 求最短路径
Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. ...
- 鉴于崔庆才大大的对于 beautifulsoup 的再理解
源地址看 soups = BeautifulSoup(html) soup = BeautifulSoup(open('index.html')) print soup.prettify() Tag通 ...
- SEVERE: Unable to process Jar entry [avassist xxxx.class]
<bean id="sqlSessionTemplate2" class="org.mybatis.spring.SqlSessionTemplate" ...
- 高通量计算框架HTCondor(四)——案例准备
目录 1. 正文 1.1. 任务划分 1.2. 任务程序 2. 相关 1. 正文 1.1. 任务划分 使用高通量计算第一步就是要针对密集运算任务做任务划分.将一个海量的.耗时的.耗资源的任务划分成合适 ...
- .Net Core2.*学习手册
1.net core 基础知识解析(创建一个.net core网站)(视频录制) 1.1 Startup解析(没写) 1.2 目录结构分析(没写) 1.3 使用静态文件(没写) 1.4 Control ...