「BZOJ4173」数学
题面
已知
\]
且每个 \(k\) 满足
\]
求
\]
Part 1
令
\]
所以有
\]
\]
所以
\]
两边同时除以 \(k\) 并向下取整得
\]
因为
\]
所以
\]
\]
已知
\]
所以式子可化为
\]
化简得
\]
因为
\]
所以
\]
又因为
\]
所以
\]
即
\]
Part2
先忽视要求式子的部分, 得
\]
即
\]
即
\]
因为
\]
所以
\]
\]
结论
\]
代码
#include <bits/stdc++.h>
using namespace std;
const int mod=998244353;
unsigned long long n,m;
unsigned long long phi(unsigned long long x)
{
unsigned long long ans=x;
for (unsigned long long i=2;i*i<=x;i++)
{
if (x%i==0)
{
ans-=ans/i;
while (x%i==0) x/=i;
}
}
if (x>1) ans-=ans/x;
return ans%mod;
}
int main()
{
cin>>n>>m;
cout<<(phi(n)%mod)*(phi(m)%mod)%mod*(n%mod)%mod*(m%mod)%mod;
return 0;
}
「BZOJ4173」数学的更多相关文章
- 2018.06.26「TJOI2018」数学计算(线段树)
描述 小豆现在有一个数 xxx ,初始值为 111 . 小豆有 QQQ 次操作,操作有两种类型: 111 $ m$ : x=x×mx=x×mx=x×m ,输出 xxx modmodmod MMM : ...
- 每个程序员都可以「懂」一点 Linux
提到 Linux,作为程序员来说一定都不陌生.但如果说到「懂」Linux,可能就没有那么多人有把握了.到底用 Linux 离懂 Linux 有多远?如果决定学习 Linux,应该怎么开始?要学到什么程 ...
- LOJ 3184: 「CEOI2018」斐波那契表示法
题目传送门:LOJ #3184. 题意简述: 题目说得很清楚了. 题解: 首先需要了解「斐波那契数系」为何物. 按照题目中定义的斐波那契数列 \(F_n\),可以证明,每个非负整数 \(n\) 都能够 ...
- 「NOI2012」骑行川藏
「NOI2012」骑行川藏 题目描述 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨. 川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的 ...
- 「MoreThanJava」计算机发展史—从织布机到IBM
「MoreThanJava」 宣扬的是 「学习,不止 CODE」,本系列 Java 基础教程是自己在结合各方面的知识之后,对 Java 基础的一个总回顾,旨在 「帮助新朋友快速高质量的学习」. 当然 ...
- 「MoreThanJava」一文了解二进制和CPU工作原理
「MoreThanJava」 宣扬的是 「学习,不止 CODE」,本系列 Java 基础教程是自己在结合各方面的知识之后,对 Java 基础的一个总回顾,旨在 「帮助新朋友快速高质量的学习」. 当然 ...
- 「MoreThanJava」机器指令到汇编再到高级编程语言
「MoreThanJava」 宣扬的是 「学习,不止 CODE」,本系列 Java 基础教程是自己在结合各方面的知识之后,对 Java 基础的一个总回顾,旨在 「帮助新朋友快速高质量的学习」. 当然 ...
- 「MoreThanJava」Day2:变量、数据类型和运算符
「MoreThanJava」 宣扬的是 「学习,不止 CODE」,本系列 Java 基础教程是自己在结合各方面的知识之后,对 Java 基础的一个总回顾,旨在 「帮助新朋友快速高质量的学习」. 当然 ...
- 「MoreThanJava」Day 3:构建程序逻辑的方法
「MoreThanJava」 宣扬的是 「学习,不止 CODE」,本系列 Java 基础教程是自己在结合各方面的知识之后,对 Java 基础的一个总回顾,旨在 「帮助新朋友快速高质量的学习」. 当然 ...
随机推荐
- H3C 基本ACL部署位置示例
- (二)C#编程基础复习——变量和常量
今天要复习一下C#基础中的变量和常量,所谓变量,就是用来存储特定类型的数据,分为值类型和引类型,可以根据需要随时改变变量中所村存储的数据值,变量必须先声明,然后才能赋值:常量就是固定不变的值,常量的变 ...
- CF351E Jeff and Permutation
CF351E Jeff and Permutation 贪心好题 考虑每个对能否最小化贡献和 先不考虑绝对值相同情况 发现,对于a,b假设|a|<|b|,那么有无贡献只和b的正负有关!如果a在b ...
- mysql导入文件出现Data truncated for column 'xxx' at row 1的原因
mysql导入文件的时候很容易出现"Data truncated for column 'xxx' at row x",其中字符串里的xxx和x是指具体的列和行数. 有时候,这是因 ...
- CCPC 2018 吉林 H "LOVERS" (线段树)
---恢复内容开始--- 传送门 参考资料: [1]:https://blog.csdn.net/mmk27_word/article/details/89788448 题目描述: The Fool ...
- H3C FTP双TCP连接方式
- H3C 根据子网掩码计算子网数
- linux进程互斥等待
我们已经见到当一个进程调用 wake_up 在等待队列上, 所有的在这个队列上等待的进程 被置为可运行的. 在许多情况下, 这是正确的做法. 但是, 在别的情况下, 可能提前知道 只有一个被唤醒的进程 ...
- 51nod 1307绳子和重物
1307 绳子与重物 题目来源: Codility 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 收藏 关注 有N条绳子编号 0 至 N - 1,每条绳子后 ...
- 20191029校内ACM部分题解
20191029校内ACM部分题解 https://codeforces.com/group/32W4q7bPme/contest/257710 B数学 给定一个在\([0,1]\)等概率随机区间的随 ...