题面

已知

\[\large{S(n,m)=\{k_{1},k_{2},\cdots k_{i}\}}
\]

且每个 \(k\) 满足

\[\large{n \%k+m\%k\geq k}
\]

\[\large{\phi(n)\times \phi(m)\times\sum_{k\in S(n,m) }\phi(k)\%998244353}
\]

Part 1

\[\large{n=a_{1} \times k +b_{1} ,m=a_{2} \times k +b_{2}}
\]

所以有

\[\large{b_{1}+b_{2} \geq k}
\]

\[\large{(a_{1} \times k +b_{1})+(a_{2} \times k +b_{2}) \geq (a_{1}+a_{2}+1)\times k}
\]

所以

\[\large{n+m \geq (a_{1}+a_{2}+1)\times k}
\]

两边同时除以 \(k\) 并向下取整得

\[\large{\lfloor \frac{n+m}{k} \rfloor \geq a_{1}+a_{2}+1}
\]

因为

\[\large{a_{1}=\lfloor \frac{n}{k} \rfloor ,a_{2}=\lfloor \frac{m}{k} \rfloor}
\]

所以

\[\large{\lfloor \frac{n+m}{k} \rfloor \geq \lfloor \frac{n}{k} \rfloor+\lfloor \frac{m}{k} \rfloor+1}
\]

\[\large{\lfloor \frac{n+m}{k} \rfloor - \lfloor \frac{n}{k} \rfloor - \lfloor \frac{m}{k} \rfloor\geq 1}
\]

已知

\[\large{\lfloor\frac{x}{y}\rfloor=\frac{x}{y}-\{\frac{x}{y}\}}
\]

所以式子可化为

\[\large{\frac{n+m}{k}-\{\frac{n+m}{k}\}-(\frac{n}{k}-\{\frac{n}{k}\}+\frac{m}{k}-\{\frac{m}{k}\})} \geq 1
\]

化简得

\[\large{\{\frac{n}{k}\}+\{\frac{m}{k}\}-\{\frac{n+m}{k}\}}\geq 1
\]

因为

\[\large{0\leq\{\frac{n}{k}\}},\{\frac{m}{k}\},\{\frac{n+m}{k}\}<1
\]

所以

\[\large{1<\{\frac{n}{k}\}}+\{\frac{m}{k}\}-\{\frac{n+m}{k}\}<2
\]

又因为

\[\large{\{\frac{n}{k}\}+\{\frac{m}{k}\}-\{\frac{n+m}{k}\}}\geq 1,\{\frac{n}{k}\}+\{\frac{m}{k}\}-\{\frac{n+m}{k}\}\in N^{+}
\]

所以

\[\large{\{\frac{n}{k}\}+\{\frac{m}{k}\}-\{\frac{n+m}{k}\}}= 1
\]

\[\large{\lfloor \frac{n+m}{k} \rfloor - \lfloor \frac{n}{k} \rfloor - \lfloor \frac{m}{k} \rfloor= 1}
\]

Part2

先忽视要求式子的部分, 得

\[\large{\sum_{k\in S(n,m)}\phi(k)}
\]

\[\large{\sum_{n \%k+m\%k\geq k }\phi(k)}
\]

\[\large{\sum_{k=1}^{n+m}\phi(k)\times\lfloor \frac{n+m}{k} \rfloor}-\sum_{k=1}^{n}\phi(k)\times\lfloor \frac{n}{k} \rfloor-\sum_{k=1}^{m}\phi(k)\times\lfloor \frac{m}{k} \rfloor
\]

因为

\[\large{n=\sum_{d|n}\phi(d)}
\]

所以

\[\large{\sum_{i=1}^{n+m}i-\sum_{i=1}^{n}i-\sum_{i=1}^{m}i=\frac{(n+m)\times(n+m-1)}{2}-\frac{n\times(n-1)}{2}-\frac{m\times(m-1)}{2}-}
\]

\[\large{=n\times m}
\]

结论

\[\large{ans=\large{\phi(n)\times \phi(m)\times n\times m\%998244353}}
\]

代码

#include <bits/stdc++.h>
using namespace std; const int mod=998244353; unsigned long long n,m; unsigned long long phi(unsigned long long x)
{
unsigned long long ans=x;
for (unsigned long long i=2;i*i<=x;i++)
{
if (x%i==0)
{
ans-=ans/i;
while (x%i==0) x/=i;
}
}
if (x>1) ans-=ans/x;
return ans%mod;
} int main()
{
cin>>n>>m;
cout<<(phi(n)%mod)*(phi(m)%mod)%mod*(n%mod)%mod*(m%mod)%mod;
return 0;
}

「BZOJ4173」数学的更多相关文章

  1. 2018.06.26「TJOI2018」数学计算(线段树)

    描述 小豆现在有一个数 xxx ,初始值为 111 . 小豆有 QQQ 次操作,操作有两种类型: 111 $ m$ : x=x×mx=x×mx=x×m ,输出 xxx modmodmod MMM : ...

  2. 每个程序员都可以「懂」一点 Linux

    提到 Linux,作为程序员来说一定都不陌生.但如果说到「懂」Linux,可能就没有那么多人有把握了.到底用 Linux 离懂 Linux 有多远?如果决定学习 Linux,应该怎么开始?要学到什么程 ...

  3. LOJ 3184: 「CEOI2018」斐波那契表示法

    题目传送门:LOJ #3184. 题意简述: 题目说得很清楚了. 题解: 首先需要了解「斐波那契数系」为何物. 按照题目中定义的斐波那契数列 \(F_n\),可以证明,每个非负整数 \(n\) 都能够 ...

  4. 「NOI2012」骑行川藏

    「NOI2012」骑行川藏 题目描述 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨. 川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的 ...

  5. 「MoreThanJava」计算机发展史—从织布机到IBM

    「MoreThanJava」 宣扬的是 「学习,不止 CODE」,本系列 Java 基础教程是自己在结合各方面的知识之后,对 Java 基础的一个总回顾,旨在 「帮助新朋友快速高质量的学习」. 当然 ...

  6. 「MoreThanJava」一文了解二进制和CPU工作原理

    「MoreThanJava」 宣扬的是 「学习,不止 CODE」,本系列 Java 基础教程是自己在结合各方面的知识之后,对 Java 基础的一个总回顾,旨在 「帮助新朋友快速高质量的学习」. 当然 ...

  7. 「MoreThanJava」机器指令到汇编再到高级编程语言

    「MoreThanJava」 宣扬的是 「学习,不止 CODE」,本系列 Java 基础教程是自己在结合各方面的知识之后,对 Java 基础的一个总回顾,旨在 「帮助新朋友快速高质量的学习」. 当然 ...

  8. 「MoreThanJava」Day2:变量、数据类型和运算符

    「MoreThanJava」 宣扬的是 「学习,不止 CODE」,本系列 Java 基础教程是自己在结合各方面的知识之后,对 Java 基础的一个总回顾,旨在 「帮助新朋友快速高质量的学习」. 当然 ...

  9. 「MoreThanJava」Day 3:构建程序逻辑的方法

    「MoreThanJava」 宣扬的是 「学习,不止 CODE」,本系列 Java 基础教程是自己在结合各方面的知识之后,对 Java 基础的一个总回顾,旨在 「帮助新朋友快速高质量的学习」. 当然 ...

随机推荐

  1. 1471 - Defense Lines

    After the last war devastated your country, you - as the king of the land of Ardenia - decided it wa ...

  2. Wannafly挑战赛15 C“出队”(约瑟夫环类问题)

    传送门 •参考资料 [1]:浅梦无痕 [2]:Esquecer [3]:My CSDN •题意 n 个人围成一圈,1,2 报数,报 1 的离队,求编号为 x 的第几次出队: •对博文[1]的理解 第一 ...

  3. 深度学习——GAN

    整理自: https://blog.csdn.net/woaidapaopao/article/details/77806273?locationnum=9&fps=1 思想 表达式 实际计算 ...

  4. Executor线程池的最佳线程数量计算

    如果是IO密集型应用,则线程池大小设置为2N+1: 如果是CPU密集型应用,则线程池大小设置为N+1: N代表CPU的核数. 假设我的服务器是4核的,且一般进行大数据运算,cpu消耗较大,那么线程池数 ...

  5. vue-learning:40 - Vuex - 第一篇:概念和基本使用

    vuex 第一篇 目录 vuex概念 state / mapState getter / mapGetter mutation / mapMutation action / mapAction mod ...

  6. Comb CodeForces - 46E (动态规划)

    题面 Having endured all the hardships, Lara Croft finally found herself in a room with treasures. To h ...

  7. Codeforces Round #587 C. White Sheet(思维+计算几何)

    传送门 •题意 先给一个白矩阵,再两个黑矩阵 如果两个黑矩阵能把白矩阵包含,则输出NO 否则输出YES •思路 计算几何题还是思维题呢? 想起了上初中高中做几何求面积的题 这个就类似于那样 包含的话分 ...

  8. 将 using namespace 写在函数体中,以避免命名空间冲突

    将 using namespace xxx 写在函数体中时, 命名空间 xxx 中定义的资源只在该函数体中有效. 测试代码如下图所示(namespace std 只在函数 testFun2 中有效):

  9. monaco-editor使用

    monaco-editor是一款非常好用的web代码编辑器,那么如何把他加到自己的项目中呢. 1.下载插件 npm install monaco-editor@0.8.3 2.初始化编辑器值 < ...

  10. STM32与STM8操作寄存器的区别

    在STM8中,由于STM8寄存器较少,在头文件中定义寄存器的时候不用采取任何形式的封装,所以操作寄存器的时候直接可以用如下方式处理:PB_DDR |=0x20; 但是在STM32中,由于其寄存器实在太 ...