题面

已知

\[\large{S(n,m)=\{k_{1},k_{2},\cdots k_{i}\}}
\]

且每个 \(k\) 满足

\[\large{n \%k+m\%k\geq k}
\]

\[\large{\phi(n)\times \phi(m)\times\sum_{k\in S(n,m) }\phi(k)\%998244353}
\]

Part 1

\[\large{n=a_{1} \times k +b_{1} ,m=a_{2} \times k +b_{2}}
\]

所以有

\[\large{b_{1}+b_{2} \geq k}
\]

\[\large{(a_{1} \times k +b_{1})+(a_{2} \times k +b_{2}) \geq (a_{1}+a_{2}+1)\times k}
\]

所以

\[\large{n+m \geq (a_{1}+a_{2}+1)\times k}
\]

两边同时除以 \(k\) 并向下取整得

\[\large{\lfloor \frac{n+m}{k} \rfloor \geq a_{1}+a_{2}+1}
\]

因为

\[\large{a_{1}=\lfloor \frac{n}{k} \rfloor ,a_{2}=\lfloor \frac{m}{k} \rfloor}
\]

所以

\[\large{\lfloor \frac{n+m}{k} \rfloor \geq \lfloor \frac{n}{k} \rfloor+\lfloor \frac{m}{k} \rfloor+1}
\]

\[\large{\lfloor \frac{n+m}{k} \rfloor - \lfloor \frac{n}{k} \rfloor - \lfloor \frac{m}{k} \rfloor\geq 1}
\]

已知

\[\large{\lfloor\frac{x}{y}\rfloor=\frac{x}{y}-\{\frac{x}{y}\}}
\]

所以式子可化为

\[\large{\frac{n+m}{k}-\{\frac{n+m}{k}\}-(\frac{n}{k}-\{\frac{n}{k}\}+\frac{m}{k}-\{\frac{m}{k}\})} \geq 1
\]

化简得

\[\large{\{\frac{n}{k}\}+\{\frac{m}{k}\}-\{\frac{n+m}{k}\}}\geq 1
\]

因为

\[\large{0\leq\{\frac{n}{k}\}},\{\frac{m}{k}\},\{\frac{n+m}{k}\}<1
\]

所以

\[\large{1<\{\frac{n}{k}\}}+\{\frac{m}{k}\}-\{\frac{n+m}{k}\}<2
\]

又因为

\[\large{\{\frac{n}{k}\}+\{\frac{m}{k}\}-\{\frac{n+m}{k}\}}\geq 1,\{\frac{n}{k}\}+\{\frac{m}{k}\}-\{\frac{n+m}{k}\}\in N^{+}
\]

所以

\[\large{\{\frac{n}{k}\}+\{\frac{m}{k}\}-\{\frac{n+m}{k}\}}= 1
\]

\[\large{\lfloor \frac{n+m}{k} \rfloor - \lfloor \frac{n}{k} \rfloor - \lfloor \frac{m}{k} \rfloor= 1}
\]

Part2

先忽视要求式子的部分, 得

\[\large{\sum_{k\in S(n,m)}\phi(k)}
\]

\[\large{\sum_{n \%k+m\%k\geq k }\phi(k)}
\]

\[\large{\sum_{k=1}^{n+m}\phi(k)\times\lfloor \frac{n+m}{k} \rfloor}-\sum_{k=1}^{n}\phi(k)\times\lfloor \frac{n}{k} \rfloor-\sum_{k=1}^{m}\phi(k)\times\lfloor \frac{m}{k} \rfloor
\]

因为

\[\large{n=\sum_{d|n}\phi(d)}
\]

所以

\[\large{\sum_{i=1}^{n+m}i-\sum_{i=1}^{n}i-\sum_{i=1}^{m}i=\frac{(n+m)\times(n+m-1)}{2}-\frac{n\times(n-1)}{2}-\frac{m\times(m-1)}{2}-}
\]

\[\large{=n\times m}
\]

结论

\[\large{ans=\large{\phi(n)\times \phi(m)\times n\times m\%998244353}}
\]

代码

#include <bits/stdc++.h>
using namespace std; const int mod=998244353; unsigned long long n,m; unsigned long long phi(unsigned long long x)
{
unsigned long long ans=x;
for (unsigned long long i=2;i*i<=x;i++)
{
if (x%i==0)
{
ans-=ans/i;
while (x%i==0) x/=i;
}
}
if (x>1) ans-=ans/x;
return ans%mod;
} int main()
{
cin>>n>>m;
cout<<(phi(n)%mod)*(phi(m)%mod)%mod*(n%mod)%mod*(m%mod)%mod;
return 0;
}

「BZOJ4173」数学的更多相关文章

  1. 2018.06.26「TJOI2018」数学计算(线段树)

    描述 小豆现在有一个数 xxx ,初始值为 111 . 小豆有 QQQ 次操作,操作有两种类型: 111 $ m$ : x=x×mx=x×mx=x×m ,输出 xxx modmodmod MMM : ...

  2. 每个程序员都可以「懂」一点 Linux

    提到 Linux,作为程序员来说一定都不陌生.但如果说到「懂」Linux,可能就没有那么多人有把握了.到底用 Linux 离懂 Linux 有多远?如果决定学习 Linux,应该怎么开始?要学到什么程 ...

  3. LOJ 3184: 「CEOI2018」斐波那契表示法

    题目传送门:LOJ #3184. 题意简述: 题目说得很清楚了. 题解: 首先需要了解「斐波那契数系」为何物. 按照题目中定义的斐波那契数列 \(F_n\),可以证明,每个非负整数 \(n\) 都能够 ...

  4. 「NOI2012」骑行川藏

    「NOI2012」骑行川藏 题目描述 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨. 川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的 ...

  5. 「MoreThanJava」计算机发展史—从织布机到IBM

    「MoreThanJava」 宣扬的是 「学习,不止 CODE」,本系列 Java 基础教程是自己在结合各方面的知识之后,对 Java 基础的一个总回顾,旨在 「帮助新朋友快速高质量的学习」. 当然 ...

  6. 「MoreThanJava」一文了解二进制和CPU工作原理

    「MoreThanJava」 宣扬的是 「学习,不止 CODE」,本系列 Java 基础教程是自己在结合各方面的知识之后,对 Java 基础的一个总回顾,旨在 「帮助新朋友快速高质量的学习」. 当然 ...

  7. 「MoreThanJava」机器指令到汇编再到高级编程语言

    「MoreThanJava」 宣扬的是 「学习,不止 CODE」,本系列 Java 基础教程是自己在结合各方面的知识之后,对 Java 基础的一个总回顾,旨在 「帮助新朋友快速高质量的学习」. 当然 ...

  8. 「MoreThanJava」Day2:变量、数据类型和运算符

    「MoreThanJava」 宣扬的是 「学习,不止 CODE」,本系列 Java 基础教程是自己在结合各方面的知识之后,对 Java 基础的一个总回顾,旨在 「帮助新朋友快速高质量的学习」. 当然 ...

  9. 「MoreThanJava」Day 3:构建程序逻辑的方法

    「MoreThanJava」 宣扬的是 「学习,不止 CODE」,本系列 Java 基础教程是自己在结合各方面的知识之后,对 Java 基础的一个总回顾,旨在 「帮助新朋友快速高质量的学习」. 当然 ...

随机推荐

  1. H3C 单路径网络中环路产生过程(2)

  2. vue-learning:38 - router - 前端路由的发展

    前端路由的发展 参考博客 前端路由是什么东西? 什么是路由 在jQuery时代,我们使用<a href="https://www.example.com/example/home.ht ...

  3. Linux 内核 低级 sysfs 操作

    kobject 是在 sysfs 虚拟文件系统之后的机制. 对每个在 sysfs 中发现的目录, 有一个 kobject 潜伏在内核某处. 每个感兴趣的 kobject 也输出一个或多个属性, 它出现 ...

  4. LuoguP3045牛券Cow Coupons

    LuoguP3045 [USACO12FEB]牛券Cow Coupons 果然我贪心能力还是太差了 ZR讲过的原题我回来对做法没有一丁点印象 有时候有这样一种题目 每个数有两种不同的价值 你可以选择价 ...

  5. koa2+koa-art-template利用日期管道实现在jat模板中将时间戳转为日期时间

    var sp = require("silly-datetime"); var render = require("koa-art-template"); va ...

  6. linux安装python3.*,更换Python2.*

    下载并解压:Python-3.5.7.tgz [root@AH-aQYWTYSJZX01 python3]# ll total 20268 -rw-r----- 1 temp01 temp01 207 ...

  7. C#获取美团评价信息

    闲来无事,朋友需要一家美团店铺的评价消息,索性做个小工具. 一:第一步找到目标网站 地址:https://www.meituan.com/meishi/4460141/ 二:分析网页请求 在目标网页, ...

  8. linux上传文件的命令

    由于svm挂机不能通过svn提交代码,所以今天尝试了一下linux的rz和sz命令 1.sz命令是把文件下载到本地,使用方法如下 sz  文件名 回车之后会弹出一个本地的路径选择框,选择要下载的路径即 ...

  9. DEVOPS技术实践_22:根据参数传入条件控制执行不同stage

    前面学习了参数的传递和调用,下面研究一下根据参数作为条件执行不同的stage 使用叫when 和expression控制某一个stage的运行, 运行场景例如写了多个stage,这个pipeline脚 ...

  10. Web基础了解版11-Ajax-JSON

    Ajax AJAX即“Asynchronous Javascript And XML”:是,不发生页面跳转.异步请求载入内容并改写局部页面内容的技术. 也可以简单的理解为通过JS向服务器发送请求.   ...