概述

Kafka 的数据如何传输到HDFS?如果仔细思考,会发现这个问题并不简单。

不妨先想一下这两个问题?

1)为什么要将Kafka的数据传输到HDFS上?

2)为什么不直接写HDFS而要通过Kafka?

HDFS一直以来是为离线数据的存储和计算设计的,因此对实时事件数据的写入并不友好,而Kafka生来就是为实时数据设计的,但是数据在Kafka上无法使用离线计算框架来作批量离线分析。

那么,Kafka为什么就不能支持批量离线分析呢?想象我们将Kafka的数据按天拆分topic,并建足够多的分区,然后通过Spark-Streaming,Flink,又或者是KSql等来处理单个topic中的所有数据--这就相当于处理某一天的所有数据。这种计算的性能从原理上来说是不比Spark或者Hive离线计算差的。

而且更好的是,这样我们就不用将kafka中的数据翻来覆去的导到hdfs,而是直接在kafka上作计算。

后面我们将对此展开更多的讨论,这里先回归正题,在常见的大数据系统架构(lambda)中,通常会将kafka中的数据导入到HDFS来作离线的数据分析。在Kafka的官方wiki中提到了这样的一些方式来对接Hadoop生态。

https://cwiki.apache.org/confluence/display/KAFKA/Ecosystem

其中最常用的是Flume,尤其是在CDH集群中,能够很方便的集成Flume和Kafka。

而HortonWorks在其3.0之后的HDP版本中去掉了Flume,原因是想将Flume放到HDF(HortonWorks Data Flow)中,这个做法还是比较失策的,虽然成全了HDF,但却让HDP失去了其完整性。

本案例中使用Ambari 2.7.4+HDP3.1 由于缺少了Flume组件,因此使用Kafka Connect HDFS来连接Hadoop。

下面记录了连接过程。以下操作的基础是,有一个搭建好的Ambari集群,并安装了Kafka+HDFS。

参考安装文档:

https://docs.confluent.io/3.0.0/connect/connect-hdfs/docs/index.html

项目github地址:

https://github.com/confluentinc/kafka-connect-hdfs

一.下载软件包

[work@node2 ~]$ wget http://packages.confluent.io/archive/3.0/confluent-3.0.0-2.11.zip
[work@node2 ~]$ unzip confluent-3.0.0-2.11.zip

二.快速体验Kafka-Connect

下面的例子其实不需要下载Confluent,是Kafka2.0中自带的FileSource和FileSink,而Confluent中也包含了这些功能,如果需要用到Kafka Connect HDFS,就需要Confluent了,这里只是用最简单的例子快速了解Kafka-Connect的用法。

2.1 在主目录下写test.txt文件,内容如下

[work@node2 confluent-3.0.0]$ ls
bin etc README.archive share src test.txt
[work@node2 confluent-3.0.0]$ cat test.txt
foo
bar
New Record
New Record

2.2 修改etc/kafka/connect-standalone.properties

[work@node2 confluent-3.0.0]$ vi etc/kafka/connect-standalone.properties

Ambari的kafka端口不是9092,而是6667。

Connector的rest.port默认是8083,和Ambari中安装的Druid的端口有冲突,所以改成8822。

2.3 运行命令

[work@node2 confluent-3.0.0]$ ./bin/connect-standalone etc/kafka/connect-standalone.properties etc/kafka/connect-file-source.properties etc/kafka/connect-file-sink.properties

2.4 生成sink文件

[work@node2 confluent-3.0.0]$ ls
bin etc logs README.archive share src test.sink.txt test.txt
[work@node2 confluent-3.0.0]$ cat test.sink.txt
foo
bar
New Record
New Record

尝试新加一行数据

[work@node2 confluent-3.0.0]$ echo "Hello World" >> test.txt
[work@node2 confluent-3.0.0]$ cat test.sink.txt
foo
bar
New Record
New Record
Hello World

2.5 分析 etc/kafka/connect-file-source.properties 和 etc/kafka/connecfile-sink.properties

etc/kafka/connect-file-source.properties 如下

etc/kafka/connecfile-sink.properties 如下

通过Kafka Console Consumer查看 connect-test topic

[work@node2 confluent-3.0.0]$ ./bin/kafka-console-consumer  --bootstrap-server node1:6667 --topic connect-test --from-beginning --new-consumer
{"schema":{"type":"string","optional":false},"payload":"foo"}
{"schema":{"type":"string","optional":false},"payload":"bar"}
{"schema":{"type":"string","optional":false},"payload":"New Record"}
{"schema":{"type":"string","optional":false},"payload":"New Record"}
{"schema":{"type":"string","optional":false},"payload":"Hello World"}

2.6 Converter

从上一节中可以看到一行行json格式的数据,其中payload是原始数据。在这里connect-test这个topic有点类似于flume中的channel的角色,用来连接source和sink缓存中间数据。

当数据量非常大的情况下,这种额外的处理会造成性能和空间的浪费。

[work@node2 confluent-3.0.0]$ vi etc/kafka/connect-standalone.properties

修改connect的配置,数据在传递过程中将不再作任何处理。StringConverter源码传送门:

https://github.com/apache/kafka/blob/trunk/connect/api/src/main/java/org/apache/kafka/connect/storage/StringConverter.java

key.converter=org.apache.kafka.connect.storage.StringConverter
value.converter=org.apache.kafka.connect.storage.StringConverter
key.converter.schemas.enable=false
value.converter.schemas.enable=false
internal.key.converter=org.apache.kafka.connect.storage.StringConverter
internal.value.converter=org.apache.kafka.connect.storage.StringConverter
internal.key.converter.schemas.enable=false
internal.value.converter.schemas.enable=false

三.通过Kafka将数据写入到HDFS

https://github.com/confluentinc/kafka-connect-hdfs/blob/master/src/main/java/io/confluent/connect/hdfs/string/StringFormat.java

如果不使用Avro格式来存储和处理数据,那么这里要加一个配置

format.class=io.confluent.connect.hdfs.string.StringFormat

但是比较遗憾的是Confluent3.0.0的版本中不包含这个类。因此这里我使用了confluent-5.3.1的版本,然后再通过如下命令安装kafka-connect-hdfs

confluent-hub install confluentinc/kafka-connect-hdfs:latest

启动

bin/connect-standalone etc/kafka/connect-standalone.properties  share/confluent-hub-components/confluentinc-kafka-connect-hdfs/etc/quickstart-hdfs.properties

所有写入到test_hdfs这个topic中的数据都会写入到hdfs中。

[work@node2 confluent-5.3.1]$ bin/kafka-console-producer --broker-list node1:6667 --topic test_hdfs
>123
>456
>789
>13
>213w
>asd
>

查看hdfs中的结果

[work@node2 ~]$ hadoop fs -ls /topics/test_hdfs/partition=0
Found 2 items
-rw-r--r-- 3 work work 12 2019-11-08 10:18 /topics/test_hdfs/partition=0/test_hdfs+0+0000000000+0000000002.txt
-rw-r--r-- 3 work work 12 2019-11-08 10:20 /topics/test_hdfs/partition=0/test_hdfs+0+0000000003+0000000005.txt
[work@node2 ~]$ hadoop fs -cat /topics/test_hdfs/partition=0/test_hdfs+0+0000000000+0000000002.txt
123
123
456

Connect HDFS完毕。

三.总结

优势:

1.操作简单,部署方便。

2.可以直接和hive的元数据集成自动生成分区。

缺点:

1.支持的数据格式少,avro在国内并不流行。

2.一个致命缺陷,不支持压缩!!不知道是confluent的疏忽还是有特地的考虑?因为不支持压缩,使用这个组件会浪费80%的存储空间,无实用性。

Kafka Connect HDFS的更多相关文章

  1. 使用kafka connect,将数据批量写到hdfs完整过程

    版权声明:本文为博主原创文章,未经博主允许不得转载 本文是基于hadoop 2.7.1,以及kafka 0.11.0.0.kafka-connect是以单节点模式运行,即standalone. 首先, ...

  2. Kafka到Hdfs的数据Pipeline整理

    作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处 找时间总结整理了下数据从Kafka到Hdfs的一些pipeline,如下 1> Kafka ...

  3. Streaming data from Oracle using Oracle GoldenGate and Kafka Connect

    This is a guest blog from Robin Moffatt. Robin Moffatt is Head of R&D (Europe) at Rittman Mead, ...

  4. Build an ETL Pipeline With Kafka Connect via JDBC Connectors

    This article is an in-depth tutorial for using Kafka to move data from PostgreSQL to Hadoop HDFS via ...

  5. Kafka+Storm+HDFS整合实践

    在基于Hadoop平台的很多应用场景中,我们需要对数据进行离线和实时分析,离线分析可以很容易地借助于Hive来实现统计分析,但是对于实时的需求Hive就不合适了.实时应用场景可以使用Storm,它是一 ...

  6. Kafka connect快速构建数据ETL通道

    摘要: 作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处 业余时间调研了一下Kafka connect的配置和使用,记录一些自己的理解和心得,欢迎 ...

  7. [转载] Kafka+Storm+HDFS整合实践

    转载自http://www.tuicool.com/articles/NzyqAn 在基于Hadoop平台的很多应用场景中,我们需要对数据进行离线和实时分析,离线分析可以很容易地借助于Hive来实现统 ...

  8. 打造实时数据集成平台——DataPipeline基于Kafka Connect的应用实践

    导读:传统ETL方案让企业难以承受数据集成之重,基于Kafka Connect构建的新型实时数据集成平台被寄予厚望. 在4月21日的Kafka Beijing Meetup第四场活动上,DataPip ...

  9. kafka connect rest api

    1. 获取 Connect Worker 信息curl -s http://127.0.0.1:8083/ | jq lenmom@M1701:~/workspace/software/kafka_2 ...

随机推荐

  1. CentOS 6.5 MySQL安装

    yum search mysql #查看mysql包 yum -y install mysql-server #安装mysql,注意是mysql-server iptables -I INPUT -p ...

  2. sqoop import 和export的问题

    sqoop import DB 2 hive(hdfs)是采用JDBC的过程,与传统hive区别在与多走了thrift server接口(稳定性待学习现在还比较模糊没做过大数据量测试),而export ...

  3. RandomRowFilter(3)

    比较容易理解 用来随机抽取 RandomRowFilter:从名字上就可以看出其大概的用法,本过滤器的作用就是按照一定的几率(<=0会过滤掉所有的行,>=1会包含所有的行)来返回随机的结果 ...

  4. vue开发中控制台报错问题

    1.sockjs.js?9be2:1606 GET http://localhost:8566/sockjs-node/info?t=1569478261510 net::ERR_CONNECTION ...

  5. Luogu P3254 圆桌问题(最大流)

    P3254 圆桌问题 题面 题目描述 假设有来自 \(m\) 个不同单位的代表参加一次国际会议.每个单位的代表数分别为 \(r_i (i =1,2,--,m)\) . 会议餐厅共有 \(n\) 张餐桌 ...

  6. Linux 定时任务执行 php artisan

    */ * * * * php /www/wwwroot/project/artisan command:exec postNews 5分钟执行一次

  7. poj2752

    poj2752找所有的前缀等于后缀,那就是找所有前缀等于后缀的前缀,递归再用栈存一下 #include<iostream> #include<cstdio> #include& ...

  8. TZ_16ES6学习总结

    1.块级作用域的引入 在ES6之前,js只有全局作用域和函数作用域,ES6中let关键字为其引入了块级作用域. { var a = 5; let b = 6; } console.log(a); // ...

  9. 20190927 - 28 后觉 「雅礼Day3 - 4」

    我再不开$C++11$编译我就从三楼跳下去$$\text{%%%lsc}$$ Day3 -lm -O2 -std=c++ Before $Day3$? 全是$Subtask$? $\frac{1}{4 ...

  10. 提升mysql服务器性能(HA MMM MHA MaxScale)

    原文:提升mysql服务器性能(HA MMM MHA MaxScale) 版权声明:皆为本人原创,复制必究 https://blog.csdn.net/m493096871/article/detai ...