Kafka Connect HDFS
概述
Kafka 的数据如何传输到HDFS?如果仔细思考,会发现这个问题并不简单。
不妨先想一下这两个问题?
1)为什么要将Kafka的数据传输到HDFS上?
2)为什么不直接写HDFS而要通过Kafka?
HDFS一直以来是为离线数据的存储和计算设计的,因此对实时事件数据的写入并不友好,而Kafka生来就是为实时数据设计的,但是数据在Kafka上无法使用离线计算框架来作批量离线分析。
那么,Kafka为什么就不能支持批量离线分析呢?想象我们将Kafka的数据按天拆分topic,并建足够多的分区,然后通过Spark-Streaming,Flink,又或者是KSql等来处理单个topic中的所有数据--这就相当于处理某一天的所有数据。这种计算的性能从原理上来说是不比Spark或者Hive离线计算差的。
而且更好的是,这样我们就不用将kafka中的数据翻来覆去的导到hdfs,而是直接在kafka上作计算。
后面我们将对此展开更多的讨论,这里先回归正题,在常见的大数据系统架构(lambda)中,通常会将kafka中的数据导入到HDFS来作离线的数据分析。在Kafka的官方wiki中提到了这样的一些方式来对接Hadoop生态。
https://cwiki.apache.org/confluence/display/KAFKA/Ecosystem
其中最常用的是Flume,尤其是在CDH集群中,能够很方便的集成Flume和Kafka。
而HortonWorks在其3.0之后的HDP版本中去掉了Flume,原因是想将Flume放到HDF(HortonWorks Data Flow)中,这个做法还是比较失策的,虽然成全了HDF,但却让HDP失去了其完整性。
本案例中使用Ambari 2.7.4+HDP3.1 由于缺少了Flume组件,因此使用Kafka Connect HDFS来连接Hadoop。
下面记录了连接过程。以下操作的基础是,有一个搭建好的Ambari集群,并安装了Kafka+HDFS。
参考安装文档:
https://docs.confluent.io/3.0.0/connect/connect-hdfs/docs/index.html
项目github地址:
https://github.com/confluentinc/kafka-connect-hdfs
一.下载软件包
[work@node2 ~]$ wget http://packages.confluent.io/archive/3.0/confluent-3.0.0-2.11.zip
[work@node2 ~]$ unzip confluent-3.0.0-2.11.zip
二.快速体验Kafka-Connect
下面的例子其实不需要下载Confluent,是Kafka2.0中自带的FileSource和FileSink,而Confluent中也包含了这些功能,如果需要用到Kafka Connect HDFS,就需要Confluent了,这里只是用最简单的例子快速了解Kafka-Connect的用法。
2.1 在主目录下写test.txt文件,内容如下
[work@node2 confluent-3.0.0]$ ls
bin etc README.archive share src test.txt
[work@node2 confluent-3.0.0]$ cat test.txt
foo
bar
New Record
New Record
2.2 修改etc/kafka/connect-standalone.properties
[work@node2 confluent-3.0.0]$ vi etc/kafka/connect-standalone.properties
Ambari的kafka端口不是9092,而是6667。
Connector的rest.port默认是8083,和Ambari中安装的Druid的端口有冲突,所以改成8822。
2.3 运行命令
[work@node2 confluent-3.0.0]$ ./bin/connect-standalone etc/kafka/connect-standalone.properties etc/kafka/connect-file-source.properties etc/kafka/connect-file-sink.properties
2.4 生成sink文件
[work@node2 confluent-3.0.0]$ ls
bin etc logs README.archive share src test.sink.txt test.txt
[work@node2 confluent-3.0.0]$ cat test.sink.txt
foo
bar
New Record
New Record
尝试新加一行数据
[work@node2 confluent-3.0.0]$ echo "Hello World" >> test.txt
[work@node2 confluent-3.0.0]$ cat test.sink.txt
foo
bar
New Record
New Record
Hello World
2.5 分析 etc/kafka/connect-file-source.properties 和 etc/kafka/connecfile-sink.properties
etc/kafka/connect-file-source.properties 如下
etc/kafka/connecfile-sink.properties 如下
通过Kafka Console Consumer查看 connect-test topic
[work@node2 confluent-3.0.0]$ ./bin/kafka-console-consumer --bootstrap-server node1:6667 --topic connect-test --from-beginning --new-consumer
{"schema":{"type":"string","optional":false},"payload":"foo"}
{"schema":{"type":"string","optional":false},"payload":"bar"}
{"schema":{"type":"string","optional":false},"payload":"New Record"}
{"schema":{"type":"string","optional":false},"payload":"New Record"}
{"schema":{"type":"string","optional":false},"payload":"Hello World"}
2.6 Converter
从上一节中可以看到一行行json格式的数据,其中payload是原始数据。在这里connect-test这个topic有点类似于flume中的channel的角色,用来连接source和sink缓存中间数据。
当数据量非常大的情况下,这种额外的处理会造成性能和空间的浪费。
[work@node2 confluent-3.0.0]$ vi etc/kafka/connect-standalone.properties
修改connect的配置,数据在传递过程中将不再作任何处理。StringConverter源码传送门:
key.converter=org.apache.kafka.connect.storage.StringConverter
value.converter=org.apache.kafka.connect.storage.StringConverter
key.converter.schemas.enable=false
value.converter.schemas.enable=false
internal.key.converter=org.apache.kafka.connect.storage.StringConverter
internal.value.converter=org.apache.kafka.connect.storage.StringConverter
internal.key.converter.schemas.enable=false
internal.value.converter.schemas.enable=false
三.通过Kafka将数据写入到HDFS
如果不使用Avro格式来存储和处理数据,那么这里要加一个配置
format.class=io.confluent.connect.hdfs.string.StringFormat
但是比较遗憾的是Confluent3.0.0的版本中不包含这个类。因此这里我使用了confluent-5.3.1的版本,然后再通过如下命令安装kafka-connect-hdfs
confluent-hub install confluentinc/kafka-connect-hdfs:latest
启动
bin/connect-standalone etc/kafka/connect-standalone.properties share/confluent-hub-components/confluentinc-kafka-connect-hdfs/etc/quickstart-hdfs.properties
所有写入到test_hdfs这个topic中的数据都会写入到hdfs中。
[work@node2 confluent-5.3.1]$ bin/kafka-console-producer --broker-list node1:6667 --topic test_hdfs
>123
>456
>789
>13
>213w
>asd
>
查看hdfs中的结果
[work@node2 ~]$ hadoop fs -ls /topics/test_hdfs/partition=0
Found 2 items
-rw-r--r-- 3 work work 12 2019-11-08 10:18 /topics/test_hdfs/partition=0/test_hdfs+0+0000000000+0000000002.txt
-rw-r--r-- 3 work work 12 2019-11-08 10:20 /topics/test_hdfs/partition=0/test_hdfs+0+0000000003+0000000005.txt
[work@node2 ~]$ hadoop fs -cat /topics/test_hdfs/partition=0/test_hdfs+0+0000000000+0000000002.txt
123
123
456
Connect HDFS完毕。
三.总结
优势:
1.操作简单,部署方便。
2.可以直接和hive的元数据集成自动生成分区。
缺点:
1.支持的数据格式少,avro在国内并不流行。
2.一个致命缺陷,不支持压缩!!不知道是confluent的疏忽还是有特地的考虑?因为不支持压缩,使用这个组件会浪费80%的存储空间,无实用性。
Kafka Connect HDFS的更多相关文章
- 使用kafka connect,将数据批量写到hdfs完整过程
版权声明:本文为博主原创文章,未经博主允许不得转载 本文是基于hadoop 2.7.1,以及kafka 0.11.0.0.kafka-connect是以单节点模式运行,即standalone. 首先, ...
- Kafka到Hdfs的数据Pipeline整理
作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处 找时间总结整理了下数据从Kafka到Hdfs的一些pipeline,如下 1> Kafka ...
- Streaming data from Oracle using Oracle GoldenGate and Kafka Connect
This is a guest blog from Robin Moffatt. Robin Moffatt is Head of R&D (Europe) at Rittman Mead, ...
- Build an ETL Pipeline With Kafka Connect via JDBC Connectors
This article is an in-depth tutorial for using Kafka to move data from PostgreSQL to Hadoop HDFS via ...
- Kafka+Storm+HDFS整合实践
在基于Hadoop平台的很多应用场景中,我们需要对数据进行离线和实时分析,离线分析可以很容易地借助于Hive来实现统计分析,但是对于实时的需求Hive就不合适了.实时应用场景可以使用Storm,它是一 ...
- Kafka connect快速构建数据ETL通道
摘要: 作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处 业余时间调研了一下Kafka connect的配置和使用,记录一些自己的理解和心得,欢迎 ...
- [转载] Kafka+Storm+HDFS整合实践
转载自http://www.tuicool.com/articles/NzyqAn 在基于Hadoop平台的很多应用场景中,我们需要对数据进行离线和实时分析,离线分析可以很容易地借助于Hive来实现统 ...
- 打造实时数据集成平台——DataPipeline基于Kafka Connect的应用实践
导读:传统ETL方案让企业难以承受数据集成之重,基于Kafka Connect构建的新型实时数据集成平台被寄予厚望. 在4月21日的Kafka Beijing Meetup第四场活动上,DataPip ...
- kafka connect rest api
1. 获取 Connect Worker 信息curl -s http://127.0.0.1:8083/ | jq lenmom@M1701:~/workspace/software/kafka_2 ...
随机推荐
- CentOS 6.5 MySQL安装
yum search mysql #查看mysql包 yum -y install mysql-server #安装mysql,注意是mysql-server iptables -I INPUT -p ...
- sqoop import 和export的问题
sqoop import DB 2 hive(hdfs)是采用JDBC的过程,与传统hive区别在与多走了thrift server接口(稳定性待学习现在还比较模糊没做过大数据量测试),而export ...
- RandomRowFilter(3)
比较容易理解 用来随机抽取 RandomRowFilter:从名字上就可以看出其大概的用法,本过滤器的作用就是按照一定的几率(<=0会过滤掉所有的行,>=1会包含所有的行)来返回随机的结果 ...
- vue开发中控制台报错问题
1.sockjs.js?9be2:1606 GET http://localhost:8566/sockjs-node/info?t=1569478261510 net::ERR_CONNECTION ...
- Luogu P3254 圆桌问题(最大流)
P3254 圆桌问题 题面 题目描述 假设有来自 \(m\) 个不同单位的代表参加一次国际会议.每个单位的代表数分别为 \(r_i (i =1,2,--,m)\) . 会议餐厅共有 \(n\) 张餐桌 ...
- Linux 定时任务执行 php artisan
*/ * * * * php /www/wwwroot/project/artisan command:exec postNews 5分钟执行一次
- poj2752
poj2752找所有的前缀等于后缀,那就是找所有前缀等于后缀的前缀,递归再用栈存一下 #include<iostream> #include<cstdio> #include& ...
- TZ_16ES6学习总结
1.块级作用域的引入 在ES6之前,js只有全局作用域和函数作用域,ES6中let关键字为其引入了块级作用域. { var a = 5; let b = 6; } console.log(a); // ...
- 20190927 - 28 后觉 「雅礼Day3 - 4」
我再不开$C++11$编译我就从三楼跳下去$$\text{%%%lsc}$$ Day3 -lm -O2 -std=c++ Before $Day3$? 全是$Subtask$? $\frac{1}{4 ...
- 提升mysql服务器性能(HA MMM MHA MaxScale)
原文:提升mysql服务器性能(HA MMM MHA MaxScale) 版权声明:皆为本人原创,复制必究 https://blog.csdn.net/m493096871/article/detai ...