UVa 11134 - Fabled Rooks——[问题分解、贪心法]
We would like to place n rooks, ≤ n ≤ , on a n × n
board subject to the following restrictions
• The i-th rook can only be placed within the rectangle
given by its left-upper corner (xli, yli) and its rightlower
corner (xri, yri), where ≤ i ≤ n, ≤ xli ≤xri ≤ n, ≤ yli ≤ yri ≤ n.
• No two rooks can attack each other, that is no two rooks
can occupy the same column or the same row.
Input
The input consists of several test cases. The first line of each
of them contains one integer number, n, the side of the board. n lines follow giving the rectangles
where the rooks can be placed as described above. The i-th line among them gives xli, yli, xri, andyri.
The input file is terminated with the integer ‘’ on a line by itself.
Output
Your task is to find such a placing of rooks that the above conditions are satisfied and then output n
lines each giving the position of a rook in order in which their rectangles appeared in the input. If there
are multiple solutions, any one will do. Output ‘IMPOSSIBLE’ if there is no such placing of the rooks.
Sample Input
Sample Output
解题思路:
经过分析可以发现,每个车横纵坐标的选取是相互独立的,因此可以分别考虑。那么问题可以简化成:将1~n 分别放入[xli,xri]n个区间中。选择的方法采用贪心法——以行为例,先将各个矩形区间按 xr 从小到大排序 [xl1,xr1][xl2,xr2]...[xln,xrn];依次选择每个区间中尽量靠xl的未放置车的位置,比如针对[xl1,xr1],应将车放入xl1位置,此时对于区间[xl2,xr2],xl1位置不再考虑。
代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <ctime>
#include <algorithm>
using namespace std;
#define time__ printf("time: %f\n",double(clock())/CLOCKS_PER_SEC)
const int maxn=;
struct Rec{
int xl,yl,xr,yr;
};
Rec rect[maxn+];
int id[maxn+];
int id_row_num[maxn+];
int id_col_num[maxn+];
int row[maxn+];
int col[maxn+];
int n;
void init(){
memset(id_row_num, , sizeof id_row_num);
memset(id_col_num, , sizeof id_col_num);
memset(row, , sizeof row);
memset(col,,sizeof col);
}
bool cmp_row(int &a,int &b){
return rect[a].xr<rect[b].xr;
}
bool cmp_col(int &a,int &b){
return rect[a].yr<rect[b].yr;
}
bool solve_row(){
for(int i=;i<=n;i++)
id[i]=i;
sort(id+, id++n, cmp_row);
//bool ok=true;
for(int i=;i<=n;i++){
Rec &t=rect[id[i]];
bool flag=false;
for(int j=t.xl;j<=t.xr;j++){
if(row[j]==){
row[j]=;
id_row_num[id[i]]=j;
flag=true;
break;
}
}
if(!flag){
return false;
}
}
return true;
}
bool solve_col(){
for(int i=;i<=n;i++)
id[i]=i;
sort(id+, id++n, cmp_col);
//bool ok=true;
for(int i=;i<=n;i++){
Rec &t=rect[id[i]];
bool flag=false;
for(int j=t.yl;j<=t.yr;j++){
if(col[j]==){
col[j]=;
id_col_num[id[i]]=j;
flag=true;
break;
}
}
if(!flag){
return false;
}
}
return true;
} int main(int argc, const char * argv[]) {
while(scanf("%d",&n)==&&n){
init();
for(int i=;i<=n;i++)
scanf("%d%d%d%d",&rect[i].xl,&rect[i].yl,&rect[i].xr,&rect[i].yr);
if(solve_row()&&solve_col()){
for(int i=;i<=n;i++)
printf("%d %d\n",id_row_num[i],id_col_num[i]);
}
else printf("IMPOSSIBLE\n");
//time__;
}
//time__;
return ;
}
UVa 11134 - Fabled Rooks——[问题分解、贪心法]的更多相关文章
- UVA - 11134 Fabled Rooks[贪心 问题分解]
UVA - 11134 Fabled Rooks We would like to place n rooks, 1 ≤ n ≤ 5000, on a n × n board subject to t ...
- uva 11134 - Fabled Rooks(问题转换+优先队列)
题目链接:uva 11134 - Fabled Rooks 题目大意:给出n,表示要在n*n的矩阵上放置n个车,并且保证第i辆车在第i个区间上,每个区间给出左上角和右小角的坐标.另要求任意两个车之间不 ...
- UVA 11134 Fabled Rooks(贪心的妙用+memset误用警示)
题目链接: https://cn.vjudge.net/problem/UVA-11134 /* 问题 输入棋盘的规模和车的数量n(1=<n<=5000),接着输入n辆车的所能在的矩阵的范 ...
- UVA 11134 Fabled Rooks 贪心
题目链接:UVA - 11134 题意描述:在一个n*n(1<=n<=5000)的棋盘上放置n个车,每个车都只能在给定的一个矩形里放置,使其n个车两两不在同一行和同一列,判断并给出解决方案 ...
- UVa 11134 Fabled Rooks (贪心+问题分解)
题意:在一个n*n的棋盘上放n个车,让它们不互相攻击,并且第i辆车在给定的小矩形内. 析:说实话,一看这个题真是没思路,后来看了分析,原来这个列和行是没有任何关系的,我们可以分开看, 把它变成两个一维 ...
- UVA - 11134 Fabled Rooks问题分解,贪心
题目:点击打开题目链接 思路:为了满足所有的车不能相互攻击,就要保证所有的车不同行不同列,于是可以发现,行与列是无关的,因此题目可以拆解为两个一维问题,即在区间[1-n]之间选择n个不同的整数,使得第 ...
- uva 11134 fabled rooks (贪心)——yhx
We would like to place n rooks, 1 n 5000, on a n nboard subject to the following restrictions• The i ...
- UVA 11134 - Fabled Rooks(贪心+优先队列)
We would like to place n rooks, 1 ≤ n ≤ 5000, on a n×n board subject to the following restrict ...
- UVA 11134 Fabled Rooks
贪心+优先队列+问题分解 对x,y 分开处理 当 xl<cnt(当前处理行)时,不能简单的选择cnt,而是应该让xl=cnt 并重新加入优先队列.(y的处理同上) #include <io ...
随机推荐
- 在n个球中,任意取出m个(不放回),求共有多少种取法
要求: 在n个球中,任意取出m个(不放回),求共有多少种取法 分析: 假设3个球A,B,C,任意取出2个,可分为取出的球中含A的部分和不含A的部分.即AB,AC为一组,BC为一组. 设函数F(n,m) ...
- C++ 浮点数 为 0 的判断
- 搭建直播服务器,使用nginx与nginx-rtmp-module搭建流媒体服务器;
现在,一起学习一下如何自己搭建一个流媒体服务器吧! 本次搭建流媒体使用的环境是centos 7.0+nginx: 让我们一起开始奇妙的流媒体之旅吧! 1.下载nginx-rtmp-module: ng ...
- Oracle事物处理
n 什么是事物 事物是把对数据库的一系列操作(dml)看做一个整体 事物用于保证数据的一致性,它由一组相关的dml语句组成,改组的dml语句要么全部成功,要么全部失败. 如:网上转账就是典型的要用事 ...
- docker安装 2016-11-06 19:14 299人阅读 评论(31) 收藏
Docker支持运行在以下CentOS版本: CentOS 7.X 安装在二进制兼容的EL7版本如 Scientific Linux也是可能成功的,但是Docker 没有测试过并且不官方支持. 此文带 ...
- 【vb.net机房收费系统】之没有包含要从继承的组件的已生成程序集 标签: vb.net继承 2015-05-02 15:19 1012人阅读
在敲到组合查询这个功能的时候,需要用到窗体的继承,但是在新建继承窗体的时候,出现了错误(没有包含要从继承的组件的已生成程序集).如下图: 问题的产生:当时没怎么注意,也不知道怎么弄的,最后反正是继承上 ...
- zip解决杨辉三角问题
杨辉三角原型: / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ 实现: a = [1] while True: print(a) ...
- 是时候了解React Native了
文章首发于简书,欢迎关注 随着科技的发展,手机开发也在向好的方向不停的转变.IOS和Android两大手机操作横空出世,称霸江湖.我们每开发一个手机软件最少都需要开发这两个终端. 两大操作系统都在不断 ...
- struts.xml中的结果类型与视图
实际上在Struts2框架中,一个完整的结果视图配置文件应该是: ? 1 2 3 4 5 <action name="Action名称" class="Action ...
- PyODPS DataFrame 的代码在哪里跑
在使用 PyODPS DataFrame 编写数据应用时,尽管编写的是同一个脚本文件,但其中的代码会在不同位置执行,这可能导致一些无法预期的问题,本文介绍当出现相关问题时,如何确定代码在何处执行,以及 ...