import os
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data os.environ['TF_CPP_MIN_LOG_LEVEL'] = '' batch_size = 128 # batch容量
display_step = 1 # 展示间隔
learning_rate = 0.01 # 学习率
training_epochs = 20 # 训练轮数,1轮等于n_samples/batch_size
example_to_show = 10 # 展示图像数目 n_hidden1_units = 256 # 第一隐藏层
n_hidden2_units = 128 # 第二隐藏层
n_input_units = 784
n_output_units = n_input_units def variable_summaries(var):
with tf.name_scope('summaries'):
mean = tf.reduce_mean(var)
tf.summary.histogram('mean', mean)
with tf.name_scope('stddev'):
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
tf.summary.scalar('stddev', stddev) # 注意,这是标量
tf.summary.scalar('max', tf.reduce_max(var))
tf.summary.scalar('min', tf.reduce_min(var))
tf.summary.histogram('histogram', var)
def WeightsVariable(n_in,n_out,name_str):
return tf.Variable(tf.random_normal([n_in,n_out]),dtype=tf.float32,name=name_str) def biasesVariable(n_out,name_str):
return tf.Variable(tf.random_normal([n_out]),dtype=tf.float32,name=name_str) def encoder(x_origin,activate_func=tf.nn.sigmoid):
with tf.name_scope('Layer1'):
Weights = WeightsVariable(n_input_units,n_hidden1_units,'Weights')
biases = biasesVariable(n_hidden1_units,'biases')
x_code1 = activate_func(tf.add(tf.matmul(x_origin,Weights),biases))
variable_summaries(Weights)
variable_summaries(biases)
with tf.name_scope('Layer2'):
Weights = WeightsVariable(n_hidden1_units,n_hidden2_units,'Weights')
biases = biasesVariable(n_hidden2_units,'biases')
x_code2 = activate_func(tf.add(tf.matmul(x_code1,Weights),biases))
variable_summaries(Weights)
variable_summaries(biases)
return x_code2 def decode(x_code,activate_func=tf.nn.sigmoid):
with tf.name_scope('Layer1'):
Weights = WeightsVariable(n_hidden2_units,n_hidden1_units,'Weights')
biases = biasesVariable(n_hidden1_units,'biases')
x_decode1 = activate_func(tf.add(tf.matmul(x_code,Weights),biases))
variable_summaries(Weights)
variable_summaries(biases)
with tf.name_scope('Layer2'):
Weights = WeightsVariable(n_hidden1_units,n_output_units,'Weights')
biases = biasesVariable(n_output_units,'biases')
x_decode2 = activate_func(tf.add(tf.matmul(x_decode1,Weights),biases))
variable_summaries(Weights)
variable_summaries(biases)
return x_decode2 with tf.Graph().as_default():
with tf.name_scope('Input'):
X_input = tf.placeholder(tf.float32,[None,n_input_units])
with tf.name_scope('Encode'):
X_code = encoder(X_input)
with tf.name_scope('decode'):
X_decode = decode(X_code)
with tf.name_scope('loss'):
loss = tf.reduce_mean(tf.pow(X_input - X_decode,2))
with tf.name_scope('train'):
Optimizer = tf.train.RMSPropOptimizer(learning_rate)
train = Optimizer.minimize(loss)
# 标量汇总
with tf.name_scope('LossSummary'):
tf.summary.scalar('loss',loss)
tf.summary.scalar('learning_rate',learning_rate)
# 图像展示
with tf.name_scope('ImageSummary'):
image_original = tf.reshape(X_input,[-1, 28, 28, 1])
image_reconstruction = tf.reshape(X_decode, [-1, 28, 28, 1])
tf.summary.image('image_original', image_original, 9)
tf.summary.image('image_recinstruction', image_reconstruction, 9)
# 汇总
merged_summary = tf.summary.merge_all() init = tf.global_variables_initializer() writer = tf.summary.FileWriter(logdir='E:\\tensorboard\\logsssxx', graph=tf.get_default_graph())
writer.flush() mnist = input_data.read_data_sets('E:\\MNIST_data\\', one_hot=True) with tf.Session() as sess:
sess.run(init)
total_batch = int(mnist.train.num_examples / batch_size)
for epoch in range(training_epochs):
for i in range(total_batch):
batch_xs,batch_ys = mnist.train.next_batch(batch_size)
_,Loss = sess.run([train,loss],feed_dict={X_input: batch_xs})
Loss = sess.run(loss,feed_dict={X_input: batch_xs})
if epoch % display_step == 0:
print('Epoch: %04d' % (epoch + 1),'loss= ','{:.9f}'.format(Loss))
summary_str = sess.run(merged_summary,feed_dict={X_input: batch_xs})
writer.add_summary(summary_str,epoch)
writer.flush()
writer.close()
print('训练完毕!')

吴裕雄 PYTHON 神经网络——TENSORFLOW 双隐藏层自编码器设计处理MNIST手写数字数据集并使用TENSORBORD描绘神经网络数据2的更多相关文章

  1. 吴裕雄 PYTHON 神经网络——TENSORFLOW 单隐藏层自编码器设计处理MNIST手写数字数据集并使用TensorBord描绘神经网络数据

    import os import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from tensorflow ...

  2. 『TensorFlow』单&双隐藏层自编码器设计

    计算图设计 很简单的实践, 多了个隐藏层 没有上节的高斯噪声 网络写法由上节的面向对象改为了函数式编程, 其他没有特别需要注意的,实现如下: import numpy as np import mat ...

  3. Android+TensorFlow+CNN+MNIST 手写数字识别实现

    Android+TensorFlow+CNN+MNIST 手写数字识别实现 SkySeraph 2018 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站 ...

  4. TensorFlow——MNIST手写数字识别

    MNIST手写数字识别 MNIST数据集介绍和下载:http://yann.lecun.com/exdb/mnist/   一.数据集介绍: MNIST是一个入门级的计算机视觉数据集 下载下来的数据集 ...

  5. Tensorflow实现MNIST手写数字识别

    之前我们讲了神经网络的起源.单层神经网络.多层神经网络的搭建过程.搭建时要注意到的具体问题.以及解决这些问题的具体方法.本文将通过一个经典的案例:MNIST手写数字识别,以代码的形式来为大家梳理一遍神 ...

  6. mnist手写数字识别——深度学习入门项目(tensorflow+keras+Sequential模型)

    前言 今天记录一下深度学习的另外一个入门项目——<mnist数据集手写数字识别>,这是一个入门必备的学习案例,主要使用了tensorflow下的keras网络结构的Sequential模型 ...

  7. 基于tensorflow的MNIST手写数字识别(二)--入门篇

    http://www.jianshu.com/p/4195577585e6 基于tensorflow的MNIST手写字识别(一)--白话卷积神经网络模型 基于tensorflow的MNIST手写数字识 ...

  8. 用tensorflow搭建RNN(LSTM)进行MNIST 手写数字辨识

    用tensorflow搭建RNN(LSTM)进行MNIST 手写数字辨识 循环神经网络RNN相比传统的神经网络在处理序列化数据时更有优势,因为RNN能够将加入上(下)文信息进行考虑.一个简单的RNN如 ...

  9. Tensorflow可视化MNIST手写数字训练

    简述] 我们在学习编程语言时,往往第一个程序就是打印“Hello World”,那么对于人工智能学习系统平台来说,他的“Hello World”小程序就是MNIST手写数字训练了.MNIST是一个手写 ...

随机推荐

  1. 《深入理解Java虚拟机》读书笔记五

    第六章 类文件结构 1.无关性的基石 各种不同平台的虚拟机与所有平台都统一使用程序存储格式——字节码是构成平台无关的基石. 实现语言无关性的基础仍然是虚拟机和字节码存储格式,Java虚拟机不和包括Ja ...

  2. (转)DNS使用的是TCP协议还是UDP协议

    转自:DNS使用的是TCP协议还是UDP协议 DNS同时占用UDP和TCP端口53是公认的,这种单个应用协议同时使用两种传输协议的情况在TCP/IP栈也算是个另类.但很少有人知道DNS分别在什么情况下 ...

  3. mysql数据库函数之left()、right()、substring()、substring_index()

    在实际的项目开发中有时会有对数据库某字段截取部分的需求,这种场景有时直接通过数据库操作来实现比通过代码实现要更方便快捷些,mysql有很多字符串函数可以用来处理这些需求,如Mysql字符串截取总结:l ...

  4. web-css-文本

    一.文本的水平对齐方式 使用text-align来设置文本的对齐方式:text-align的取值:left(向左对齐)/center(水平居中对齐)/right(向右对齐)/justify(两端对齐) ...

  5. spring(六):事务

    事务特性ACID 原子性(Atomicity):即事务是不可分割的最小工作单元,事务内的操作要么全做,要么全不做: 一致性(Consistency):在事务执行前数据库的数据处于正确的状态,而事务执行 ...

  6. PHP 源码 — intval 函数源码分析

    PHP 源码 - intval 函数源码分析 文章来源: https://github.com/suhanyujie/learn-computer/ 作者:suhanyujie 基于PHP 7.3.3 ...

  7. 转载:Bass management

    https://kenrockwell.com/audio/bass-management.htm https://www.axiomaudio.com/blog/bassmanagement htt ...

  8. ffmpeg-- audio decoder

    测试代码来源于:http://ffmpeg.org/doxygen/trunk/decode_audio_8c-example.html /* * Copyright (c) 2001 Fabrice ...

  9. HTML5学习(5)实体字符

    HTML   Entity 实体字符通常用于在页面中显示一些特殊符号. 书写方式: 1. &单词; 2. &#数字; 常用实体字符: <  < litter than &g ...

  10. redis 解决秒杀

    # import redis pool = redis.ConnectionPool(host = '127.0.0.1', port=6379, db=0)#创建连接池 r = redis.Redi ...