吴裕雄 PYTHON 神经网络——TENSORFLOW 双隐藏层自编码器设计处理MNIST手写数字数据集并使用TENSORBORD描绘神经网络数据2
import os
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data os.environ['TF_CPP_MIN_LOG_LEVEL'] = '' batch_size = 128 # batch容量
display_step = 1 # 展示间隔
learning_rate = 0.01 # 学习率
training_epochs = 20 # 训练轮数,1轮等于n_samples/batch_size
example_to_show = 10 # 展示图像数目 n_hidden1_units = 256 # 第一隐藏层
n_hidden2_units = 128 # 第二隐藏层
n_input_units = 784
n_output_units = n_input_units def variable_summaries(var):
with tf.name_scope('summaries'):
mean = tf.reduce_mean(var)
tf.summary.histogram('mean', mean)
with tf.name_scope('stddev'):
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
tf.summary.scalar('stddev', stddev) # 注意,这是标量
tf.summary.scalar('max', tf.reduce_max(var))
tf.summary.scalar('min', tf.reduce_min(var))
tf.summary.histogram('histogram', var)
def WeightsVariable(n_in,n_out,name_str):
return tf.Variable(tf.random_normal([n_in,n_out]),dtype=tf.float32,name=name_str) def biasesVariable(n_out,name_str):
return tf.Variable(tf.random_normal([n_out]),dtype=tf.float32,name=name_str) def encoder(x_origin,activate_func=tf.nn.sigmoid):
with tf.name_scope('Layer1'):
Weights = WeightsVariable(n_input_units,n_hidden1_units,'Weights')
biases = biasesVariable(n_hidden1_units,'biases')
x_code1 = activate_func(tf.add(tf.matmul(x_origin,Weights),biases))
variable_summaries(Weights)
variable_summaries(biases)
with tf.name_scope('Layer2'):
Weights = WeightsVariable(n_hidden1_units,n_hidden2_units,'Weights')
biases = biasesVariable(n_hidden2_units,'biases')
x_code2 = activate_func(tf.add(tf.matmul(x_code1,Weights),biases))
variable_summaries(Weights)
variable_summaries(biases)
return x_code2 def decode(x_code,activate_func=tf.nn.sigmoid):
with tf.name_scope('Layer1'):
Weights = WeightsVariable(n_hidden2_units,n_hidden1_units,'Weights')
biases = biasesVariable(n_hidden1_units,'biases')
x_decode1 = activate_func(tf.add(tf.matmul(x_code,Weights),biases))
variable_summaries(Weights)
variable_summaries(biases)
with tf.name_scope('Layer2'):
Weights = WeightsVariable(n_hidden1_units,n_output_units,'Weights')
biases = biasesVariable(n_output_units,'biases')
x_decode2 = activate_func(tf.add(tf.matmul(x_decode1,Weights),biases))
variable_summaries(Weights)
variable_summaries(biases)
return x_decode2 with tf.Graph().as_default():
with tf.name_scope('Input'):
X_input = tf.placeholder(tf.float32,[None,n_input_units])
with tf.name_scope('Encode'):
X_code = encoder(X_input)
with tf.name_scope('decode'):
X_decode = decode(X_code)
with tf.name_scope('loss'):
loss = tf.reduce_mean(tf.pow(X_input - X_decode,2))
with tf.name_scope('train'):
Optimizer = tf.train.RMSPropOptimizer(learning_rate)
train = Optimizer.minimize(loss)
# 标量汇总
with tf.name_scope('LossSummary'):
tf.summary.scalar('loss',loss)
tf.summary.scalar('learning_rate',learning_rate)
# 图像展示
with tf.name_scope('ImageSummary'):
image_original = tf.reshape(X_input,[-1, 28, 28, 1])
image_reconstruction = tf.reshape(X_decode, [-1, 28, 28, 1])
tf.summary.image('image_original', image_original, 9)
tf.summary.image('image_recinstruction', image_reconstruction, 9)
# 汇总
merged_summary = tf.summary.merge_all() init = tf.global_variables_initializer() writer = tf.summary.FileWriter(logdir='E:\\tensorboard\\logsssxx', graph=tf.get_default_graph())
writer.flush() mnist = input_data.read_data_sets('E:\\MNIST_data\\', one_hot=True) with tf.Session() as sess:
sess.run(init)
total_batch = int(mnist.train.num_examples / batch_size)
for epoch in range(training_epochs):
for i in range(total_batch):
batch_xs,batch_ys = mnist.train.next_batch(batch_size)
_,Loss = sess.run([train,loss],feed_dict={X_input: batch_xs})
Loss = sess.run(loss,feed_dict={X_input: batch_xs})
if epoch % display_step == 0:
print('Epoch: %04d' % (epoch + 1),'loss= ','{:.9f}'.format(Loss))
summary_str = sess.run(merged_summary,feed_dict={X_input: batch_xs})
writer.add_summary(summary_str,epoch)
writer.flush()
writer.close()
print('训练完毕!')


吴裕雄 PYTHON 神经网络——TENSORFLOW 双隐藏层自编码器设计处理MNIST手写数字数据集并使用TENSORBORD描绘神经网络数据2的更多相关文章
- 吴裕雄 PYTHON 神经网络——TENSORFLOW 单隐藏层自编码器设计处理MNIST手写数字数据集并使用TensorBord描绘神经网络数据
import os import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from tensorflow ...
- 『TensorFlow』单&双隐藏层自编码器设计
计算图设计 很简单的实践, 多了个隐藏层 没有上节的高斯噪声 网络写法由上节的面向对象改为了函数式编程, 其他没有特别需要注意的,实现如下: import numpy as np import mat ...
- Android+TensorFlow+CNN+MNIST 手写数字识别实现
Android+TensorFlow+CNN+MNIST 手写数字识别实现 SkySeraph 2018 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站 ...
- TensorFlow——MNIST手写数字识别
MNIST手写数字识别 MNIST数据集介绍和下载:http://yann.lecun.com/exdb/mnist/ 一.数据集介绍: MNIST是一个入门级的计算机视觉数据集 下载下来的数据集 ...
- Tensorflow实现MNIST手写数字识别
之前我们讲了神经网络的起源.单层神经网络.多层神经网络的搭建过程.搭建时要注意到的具体问题.以及解决这些问题的具体方法.本文将通过一个经典的案例:MNIST手写数字识别,以代码的形式来为大家梳理一遍神 ...
- mnist手写数字识别——深度学习入门项目(tensorflow+keras+Sequential模型)
前言 今天记录一下深度学习的另外一个入门项目——<mnist数据集手写数字识别>,这是一个入门必备的学习案例,主要使用了tensorflow下的keras网络结构的Sequential模型 ...
- 基于tensorflow的MNIST手写数字识别(二)--入门篇
http://www.jianshu.com/p/4195577585e6 基于tensorflow的MNIST手写字识别(一)--白话卷积神经网络模型 基于tensorflow的MNIST手写数字识 ...
- 用tensorflow搭建RNN(LSTM)进行MNIST 手写数字辨识
用tensorflow搭建RNN(LSTM)进行MNIST 手写数字辨识 循环神经网络RNN相比传统的神经网络在处理序列化数据时更有优势,因为RNN能够将加入上(下)文信息进行考虑.一个简单的RNN如 ...
- Tensorflow可视化MNIST手写数字训练
简述] 我们在学习编程语言时,往往第一个程序就是打印“Hello World”,那么对于人工智能学习系统平台来说,他的“Hello World”小程序就是MNIST手写数字训练了.MNIST是一个手写 ...
随机推荐
- 访问windows共享无法分配内存问题解决
设置:“HKLMSYSTEMCurrentControlSetControlSession ManagerMemory ManagementLargeSystemCache” 为 “1″ 设置:“HK ...
- TD - 单选框 - RadioButton
基本方法 Html - 默认选中 //checked="true" - 默认选中 <input dojoType="bootstrap.form.RadioButt ...
- codeforces 1282 E. The Cake Is a Lie (dfs+构造)
链接:https://codeforces.com/contest/1282/problem/E 题意:给的是一张平面图,是一个n边形,每次可以切一刀,切出一个三角形,最终切成n-2个三角形.题目给出 ...
- 开发板上如何配置apahe2+mysql+php7
1,安装apache2 sudo apt-get install apache2 修改webroot vim /etc/apache2/apache2.conf #在其中复制最后一个 <Dire ...
- python:函数中的*args与**kwargs
首先定义一个包含*args和**kwargs的函数,这个函数唯一的功能就是输出自己的两个参数,以此来理解*args和**kwargs def myFunc(*args, **kwargs): prin ...
- 第三十七篇 入门机器学习——Numpy基础
No.1. 查看numpy版本 No.2. 为了方便使用numpy,在导入时顺便起个别名 No.3. numpy.array的基本操作:创建.查询.修改 No.4. 用dtype查看当前元素的数据类型 ...
- spring面试合集
Spring是一个开源的轻量级Java SE / Java EE开发应用框架.在传统应用程序开发中,一个完整的应用是由一组相互协作的对象组成.所以开发一个应用除了要开发业务逻辑之外,最多的是关注如何使 ...
- Mybaits(11)延迟加载
一.概述 1.概念 就是在需要用到数据时才去进行加载,不需要用的数据就不加载数据.延迟加载也称为懒加载. 2.优缺点 优点:先从单表查询,需要时再从关联表去关联查询,大大提高数据库性能,因为查询单表要 ...
- backward的gradient参数的作用
backward的gradient参数的作用 待办 https://zhuanlan.zhihu.com/p/29904755 https://zhuanlan.zhihu.com/p/2992309 ...
- 网络https工作原理
网络https工作原理 待办 https://www.runoob.com/w3cnote/https-ssl-intro.html