题面:https://www.cnblogs.com/Juve/articles/11606834.html

x:

并差集,把不能分到两个集合里的元素和并到一起,设连通块个数为cnt,则答案为:$2^{cnt}-2$

#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<algorithm>
#include<vector>
#define re register
#define int long long
using namespace std;
const int MAXN=1e5+5;
const int mod=1e9+7;
int n,a[MAXN],T,ans,num;
inline int gcd(re int a,re int b){
return b==0?a:gcd(b,a%b);
}
inline int q_pow(re int a,re int b,re int p){
re int res=1;
while(b){
if(b&1) res=res*a%p;
a=a*a%p;
b>>=1;
}
return res;
}
int fa[MAXN];
inline int find(re int x){
return fa[x]=(fa[x]==x?x:find(fa[x]));
}
vector<int>v[MAXN*10];
int prime[MAXN*10],vis[MAXN*10],tot=0,pri[MAXN*10];
void get_prime(int N){
vis[1]=1;
for(int i=2;i<=N;i++){
if(!vis[i]) prime[++tot]=i,pri[i]=tot;
for(int j=1;j<=tot&&i*prime[j]<=N;j++){
vis[i*prime[j]]=1;
if(!(i%prime[j])) break;
}
}
}
inline void divi(re int x,re int pos){
for(re int i=1;i<=tot&&prime[i]*prime[i]<=x;++i){
if(x%prime[i]==0){
v[i].push_back(pos);
while(x%prime[i]==0) x/=prime[i];
}
}
if(x>1) v[pri[x]].push_back(pos);
}
int maxx=0;
signed main(){
get_prime(1e6);
scanf("%lld",&T);
while(T--){
scanf("%lld",&n);
ans=num=maxx=0;
for(re int i=1;i<=n;++i){
fa[i]=i;
scanf("%lld",&a[i]);
divi(a[i],i);
maxx=max(maxx,a[i]);
}
for(int i=1;i<=tot&&prime[i]<=maxx;++i){
int N=v[i].size();
if(N==0) continue;
int p=find(v[i][0]);
for(int j=1;j<N;++j){
int q=find(v[i][j]);
if(p!=q) fa[q]=p;
}
v[i].clear();
}
for(int i=1;i<=n;++i){
if(fa[i]==i) ++num;
}
printf("%lld\n",((q_pow(2,num,mod)-2)%mod+mod)%mod);
}
return 0;
}

y:

定义dp:f[i][j][k]表示走了i步,当前点是j,状态为k的一个bool数组,表示是否有该状态存在

为节省空间我们分两部分转移,这样第一维只有$\frac{d}{2}$,第三维只有$2^{\frac{d}{2}}$,

初始状态:$f1[0][1][0]=1,f2[0][i][0]=1(i \in n)$,

我们用连通性转移,最后统计答案是把两个dp数组的状态和在一起

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
const int MAXN=95;
int n,m,d,len1,len2,ans=0;
bool cal1[13][MAXN][(1<<13)+5],cal2[13][MAXN][(1<<13)+5];
vector< pair<int,int> >mp[MAXN];
signed main(){
scanf("%d%d%d",&n,&m,&d);
len1=d/2,len2=d-len1;
cal1[0][1][0]=1;
for(int i=1;i<=n;++i) cal2[0][i][0]=1;
for(int i=1,u,v,c;i<=m;++i){
scanf("%d%d%d",&u,&v,&c);
mp[u].push_back(make_pair(v,c));
mp[v].push_back(make_pair(u,c));
}
for(int i=0;i<len1;++i){
int s=(1<<i);
for(int j=0;j<s;++j)
for(int k=1;k<=n;++k){
int N=mp[k].size();
for(int p=0;p<N;++p)
cal1[i+1][mp[k][p].first][(j<<1)+mp[k][p].second]|=cal1[i][k][j];
}
}
for(int i=0;i<len2;++i){
int s=(1<<i);
for(int j=0;j<s;++j)
for(int k=1;k<=n;++k){
int N=mp[k].size();
for(int p=0;p<N;++p)
cal2[i+1][mp[k][p].first][(j<<1)+mp[k][p].second]|=cal2[i][k][j];
}
}
for(int i=0;i<(1<<d);++i)
for(int j=1;j<=n;++j)
if(cal1[len1][j][i>>len2]&&cal2[len2][j][i&((1<<len2)-1)]){
++ans;
break;
}
printf("%d\n",ans);
return 0;
}

z:

全机房没几个作出来的,只能放标算了,去题面里找

csp-s模拟测试54x,y,z题解的更多相关文章

  1. [CSP-S模拟测试]:小Y的图(最小生成树+LCA)

    题目传送门(内部题131) 输入格式 第一行三个整数$n$.$m$和$Q$. 接下来$m$行每行三个整数$x$.$y$.$z$($1\leqslant x,y\leqslant n,1\leqslan ...

  2. [CSP模拟测试43、44]题解

    状态极差的两场.感觉现在自己的思维方式很是有问题. (但愿今天考试开始的一刻我不会看到H I J) A 考场上打了最短路+贪心,水了60. 然而正解其实比那30分贪心好想多了. 进行n次乘法后的结果一 ...

  3. [20190727NOIP模拟测试9]单(single) 题解(树上dp)

    啊啊啊啊啊啊啊啊考场上差一点就A掉了5555 千里之堤溃于蚁穴……鬼知道最后一步那么显然的柿子我为什么没考虑用上…… 观察数据范围可知,出题人期望我们想出一个$O(n)$的做法 当然也有可能是$O(n ...

  4. [NOIP模拟测试9]题(Problem) 题解 (组合数全家桶+dp)

    达哥送分给我我都不要,感觉自己挺牛批. $type=0:$ 跟visit那题类似,枚举横向移动的步数直接推公式: $ans=\sum C_n^i \times C_i^{\frac{i}{2}} \t ...

  5. [7.18NOIP模拟测试5]砍树 题解(数论分块)

    题面(加密) 又考没学的姿势……不带这么玩的…… 考场上打了个模拟 骗到30分滚粗了 稍加思考(滑稽)可将题面转化为: 求一个最大的$d$,使得 $\sum \limits _{i=1}^n {(\l ...

  6. [NOIP模拟测试3] 建造游乐园 题解(欧拉图性质)

    Orz 出题人石二队爷 我们可以先求出有n个点的联通欧拉图数量,然后使它删或增一条边得到我们要求的方案 也就是让它乘上$C_n^2$ (n个点里选2个点,要么删边要么连边,选择唯一) 那么接下来就是求 ...

  7. CSP-S 模拟测试 45 题解

    由于咕掉的题解太多了,所以只能趁改完不动题的时间,来补补坑qwq,还是太弱了. 考试过程: 到新机房的第一次考试,貌似海星? 第一题一开始就觉得是个贪心,但以为所有小怪兽都要打完,所以想复杂了,但后来 ...

  8. [CSP-S模拟测试92]题解

    A.数列 显然每个数的答案是互相独立的,直接扩欧求解.我们需要最小化$ax+by=gcd(a,b)$中的$|x|+|y|$,而显然当x或y靠近0时答案可能最优,列个不等式求一下即可. 能$O(1)$千 ...

  9. [CSP-S模拟测试86]题解

    好久没有写整套题的题解了呢……主要是这两天考试题愈发神仙 实在是超出了垃圾博主的能力范围啊QAQ A.异或 不难想到,如果我们得到了$[L,R]$中每一位上0和1的个数,那么答案即为$2 \times ...

随机推荐

  1. IDEA web 开发环境搭建

    最近由eclipse 换 IDEA ,记录下开发环境的搭建过程. 1 配置idea vim 既可以使用IDEA方便的代码提示和调试功能,又可以方便使用vim编辑文件,安装完成后显示为vim Emula ...

  2. 20140315 模板类pair的用法 2、visual 2010调整代码格式是ctrl+k+

    1.模板类pair的用法 包含头文件#include<utility>   http://blog.csdn.net/laixingjun/article/details/9005200 ...

  3. centos 7 设置IP地址

    先说下安装方式:我是采用的最小化安装 虚拟机软件:vmware 设置IP有两种情况,动态IP和静态IP,下面分别说明两种IP地址的设置方法 1.动态IP 条件:路由设置了动态分配IP地址(一般默认是动 ...

  4. jquery下拉框应用

    <!DOCTYPE html> <html lang="en"> <head> <script src="http://code ...

  5. python自动生成useragent

    首先安装相关的库 pip install fake-useragent 然后使用该库 from fake_useragent import UserAgent ua = UserAgent() ua. ...

  6. python包下载路径

    python所有包.模块镜像站 https://www.lfd.uci.edu/~gohlke/pythonlibs/

  7. pyhton2与python3的使用区别

    刚刚开始学习python这门编程语言,考虑到python不同版本的一些用法不同,收集整理了一份python2与python3之间的区别,目前可能不全 编码(核心类) Python2默认编码ascii, ...

  8. Harry and magic string HDU - 5157 记录不相交的回文串对数

    题意: 记录不相交的回文串对数 题解: 正着反着都来一遍回文树 用sum1[i] 表示到 i 位置,出现的回文串个数的前缀和 sun2[i]表示反着的个数 ans+=sum1[i-1]*sum2[i] ...

  9. Worker Thread等到工作来,来了就工作

    Worker是“工人”的意思,worker thread pattern中,工人线程(worker thread)会一次抓一件工作来处理,当没有工作可做时,工人线程会停下来等待心得工作过来. Work ...

  10. Eclipse注释快捷键、如何生成API以及可能遇到的问题解决

    1.Java注释方式单行注释// 快捷键:ctrl+/多行注释/* 快捷键:shift+ctrl+/*/文档注释/** 快捷键:shift+Alt+j */ 2.生成API文档 打开index.htm ...