Uva10791 唯一分解定理模板

题意:
输入整数n,要求至少两个正整数,使得他们的最小公倍数为n,且这些整数的和最小
解法:
首先假设我们知道了一系列数字a1,a2,a3……an,他们的LCM是n,那么什么时候他们是最优解呢,当他们两两互质的时候
为了方便我们以两个数来说明问题。
a和b的LCM是n,GCD是m,那么n=a/m*b , 它们的和就是sum=a+b;
如果m不为1(即a和b不互质),那么我们为什么不优化一下,将a变为a=a/m呢?,改变后a和b的LCM依然是n,但是他们的和显然减少了
所以我们得到最重要的一个性质,要想a1,a2,a3……an的和最小,要保证他们两两互质,只要存在不互质的两个数,就一定可以近一步优化
那我们怎么保证两两互质呢?方法其实很简单,直接分解质因子
例如24=2*2*2*3 , 只能分解为8和3,因为这里有3个2,这3个2必须在一起,如果分开了这3个2,这出现有两个数会有一个公共的质因子2,并且会使这两个数的LCM不是24
再例如72=2*2*2*3*3,只能分为8和9,因为3个2和2个3都不能分开,他们必须在一次
所以,我们将一个数n分解为质因子后,顺便做一个处理,在除干净一个质因子的同时,将他们乘起来作为一个因子,处理完后会得到多个因子,他们之间同样满足两两互质的性质
然后是进一步的分析
例如264600=8*27*25*49 , 只是由3个2,3个3,2个5,2个7,处理后得到的因子,那么8,27,25,49的LCM是264600,并且两两互质,他们还要不要处理呢?不需要了,直接将他们加起来就是我们要的答案!为什么呢?可以将8,27,25,49这些数字乘起来,无论怎样乘都好,最后得到的数字它们的LCM依然是n,但是乘起来再相加显然比直接相加要大得多!
所以我们已经得到了这个问题的解法
1.将一个数分解成质因子,将相同的因子乘起来作为一个处理后的因子
2.将处理后得到的多个因子直接相加就是答案
3.因为题目说只要需要两个数字,所以对于1和素数我们需要小心。对于素数,我们只能分解出一个因子就它自己,对于1一个因子都分解不出来(我们不把1当做因子),他们的答案都是n+1,因为只有1和n的LCM是n
/*
唯一分解定理的应用,work_quality_factor就是分解质因数的板子
将一个数分解质因数,将他们所有相同的因子乘起来作为一个新的因子,最后的和就是这些因子和
*/
#include<cstdio>
#include<cmath>
using namespace std;
typedef long long ll;
const int maxn = ;
ll fac[maxn], frq[maxn]; ll poww(ll a, ll b) {
ll ans = , base = a;
while (b != ) {
if (b & != )
ans *= base;
base *= base;
b >>= ;
}
return ans;
} ll work_quality_factor(ll n, ll quality_fac[], ll frequency[])
{//n是待分解的数,quality_fac[]会存放它包含的质因子,而frequency[]存放对应次数
//如q_f[k]=7,fre[k]=2就表示质因数分解后里面包含有7,且次数是2
//函数返回有几种质因子,比如分解了25就返回1,分解28返回2
ll res, temp, i;
res = ;
temp = n;
for (i = ; i*i <= temp; i++)
if (temp%i == )
{
quality_fac[res] = i;
frequency[res] = ;
while (temp%i == )
{
temp = temp / i;
frequency[res]++;
}
res++;
}
if (temp > )
{
quality_fac[res] = temp;
frequency[res++] = ;
}
return res;
} int main() {
ll n; int kase = ;
while (scanf("%lld", &n) && n) {
ll num = work_quality_factor(n, fac, frq);
ll ans = ;
if (num == || num == ) ans = n + ;
else {
for (int i = ; i < num; i++) {
ans += poww(fac[i], frq[i]);
}
}
printf("Case %d: %lld\n", kase++, ans);
}
return ;
}
Uva10791 唯一分解定理模板的更多相关文章
- B - Common Divisors (codeforces)数论算法基本定理,唯一分解定理模板
You are given an array aa consisting of nn integers. Your task is to say the number of such positive ...
- UVA10791-Minimum Sum LCM(唯一分解定理基本应用)
原题:https://vjudge.net/problem/UVA-10791 基本思路:1.借助唯一分解定理分解数据.2.求和输出 知识点:1.筛法得素数 2.唯一分解定理模板代码 3.数论分析-唯 ...
- FZU 1075 分解素因子【数论/唯一分解定理/分解素因子裸模板】
[唯一分解定理]:https://www.cnblogs.com/mjtcn/p/6743624.html 假设x是一个正整数,它的值不超过65535(即1<x<=65535),请编写一个 ...
- NOIP2009Hankson 的趣味题[唯一分解定理|暴力]
题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现 在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲 ...
- UVA - 10375 Choose and divide[唯一分解定理]
UVA - 10375 Choose and divide Choose and divide Time Limit: 1000MS Memory Limit: 65536K Total Subm ...
- uva10375 Choose and Divide(唯一分解定理)
uva10375 Choose and Divide(唯一分解定理) 题意: 已知C(m,n)=m! / (n!*(m-n!)),输入整数p,q,r,s(p>=q,r>=s,p,q,r,s ...
- 1341 - Aladdin and the Flying Carpet ---light oj (唯一分解定理+素数筛选)
http://lightoj.com/volume_showproblem.php?problem=1341 题目大意: 给你矩形的面积(矩形的边长都是正整数),让你求最小的边大于等于b的矩形的个数. ...
- UVA 10375 Choose and divide【唯一分解定理】
题意:求C(p,q)/C(r,s),4个数均小于10000,答案不大于10^8 思路:根据答案的范围猜测,不需要使用高精度.根据唯一分解定理,每一个数都可以分解成若干素数相乘.先求出10000以内的所 ...
- 唯一分解定理 poj 1365
一行代表一个数 x 给你底数和指数 求x-1的唯一分解定理的底数和指数 从大到小输出 #include<stdio.h> #include<string.h> #include ...
随机推荐
- 简化 Spring Boot 项目部署,Flyway 搞起来
虽然我之前录了一个微人事(https://github.com/lenve/vhr)部署视频(新版微人事部署教程来啦),但是由于这次升级涉及到了 Redis 和 RabbitMQ,所以在本地跑微人事还 ...
- Golang robfig/cron 实现解析
robfig/cron是GO语言中一个定时执行注册任务的package, 最近我在工程中使用到了它,由于它的实现优雅且简单(主要是简单),所以将源码过了一遍,记录和分享在此. 文档:htt ...
- vue 入门 ------简单购物车功能实现(全选,数量加减,价格加减)
简易购物车功能(无任何布局 主要是功能) 数量的加减 商品的总价钱 全选与全不选 删除(全选.价格 受影响) <script src="https://cdn.jsdelivr.net ...
- qt creator源码全方面分析(2-10-4)
目录 Plugin Life Cycle Plugin Life Cycle 为了能够编写Qt Creator插件,您必须了解启动或关闭Qt Creator时,插件管理器所采取的步骤. 本节详细描述插 ...
- Java TreeSet的使用
1.TreeSe自带排序的set,没有重复元素. 2.TreeSet 如果构造函数中没有使用比较器,那在装载的对象类中要实现Comparable 接口. 3.TreeSet 使用初始化比较器的方式. ...
- Multicast
Source Specific Multicast (SSM) The multicast that you are probably familiar with (PIM sparse and de ...
- expect知识梳理
1 expect expect软件用于实现非交互式操作,实际应用中常用于批量部署,可以帮助运维人员管理成千上万台服务器. expect实现非交互式操作主要是在程序发出交互式询问时,按条件传递程序所需的 ...
- 【5min+】 设计模式的迷惑?Provider vs Factory
系列介绍 [五分钟的dotnet]是一个利用您的碎片化时间来学习和丰富.net知识的博文系列.它所包含了.net体系中可能会涉及到的方方面面,比如C#的小细节,AspnetCore,微服务中的.net ...
- Windows安装MySQL免安装版
安装环境: win7 64位 IP地址:192.168.2.37 防火墙已经关闭 一.安装MySQL5.7.14免安装版 1.解压文件 2.新建my.ini文件 data文件夹自动生成 my.ini里 ...
- ELK学习003:Elasticsearch启动常见问题
一.Caused by: java.lang.RuntimeException: can not run elasticsearch as root 这个错误,是因为使用root用户启动elastic ...