Codeforces 922 E Birds (背包dp)被define坑了的一题
网页链接:点击打开链接
Apart from plush toys, Imp is a huge fan of little yellow birds!

To summon birds, Imp needs strong magic. There are n trees in a row on an alley in a park, there is a nest on each of the trees. In the i-th nest there are ci birds; to summon one bird from this nest Imp needs to stay under this tree and it costs him costi points of mana. However, for each bird summoned, Imp increases his mana capacity by B points. Imp summons birds one by one, he can summon any number from 0 to ci birds from the i-th nest.
Initially Imp stands under the first tree and has W points of mana, and his mana capacity equals W as well. He can only go forward, and each time he moves from a tree to the next one, he restores X points of mana (but it can't exceed his current mana capacity). Moving only forward, what is the maximum number of birds Imp can summon?
The first line contains four integers n, W, B, X (1 ≤ n ≤ 103, 0 ≤ W, B, X ≤ 109) — the number of trees, the initial points of mana, the number of points the mana capacity increases after a bird is summoned, and the number of points restored when Imp moves from a tree to the next one.
The second line contains n integers c1, c2, ..., cn (0 ≤ ci ≤ 104) — where ci is the number of birds living in the i-th nest. It is guaranteed that
.
The third line contains n integers cost1, cost2, ..., costn (0 ≤ costi ≤ 109), where costi is the mana cost to summon a bird from the i-th nest.
Print a single integer — the maximum number of birds Imp can summon.
2 12 0 4
3 4
4 2
6
4 1000 10 35
1 2 4 5
1000 500 250 200
5
2 10 7 11
2 10
6 1
11
In the first sample base amount of Imp's mana is equal to 12 (with maximum capacity also equal to 12). After he summons two birds from the first nest, he loses 8 mana points, although his maximum capacity will not increase (since B = 0). After this step his mana will be 4 of 12; during the move you will replenish 4 mana points, and hence own 8 mana out of 12 possible. Now it's optimal to take 4 birds from the second nest and spend 8 mana. The final answer will be — 6.
In the second sample the base amount of mana is equal to 1000. The right choice will be to simply pick all birds from the last nest. Note that Imp's mana doesn't restore while moving because it's initially full.
题目大意:一共有n棵树,刚开始有w元,第i棵树上有nb[i]只鸟,第i棵树上的鸟要花c[i]元,每走一棵树增加x元,每买一个鸟会让钱包容量增加b,问最多能买到几只鸟?
解法:背包dp,不过这题要根据数据范围选好下标,下标不能是1e9的钱数,dp的值不能是鸟数,鸟数可以用来当成下标
dp[i][j]表示走到第i棵树下,这时候已经买了j只鸟,剩下的钱数,dp[i][j] = max{dp[i-1][j - k] - k * c[i-1] + x}
坑点:每次更新dp[i][j]的时候钱不能超过钱包容量,而且要算出买几只鸟能让dp[i][j]最大,所以用了个嵌套的max,min,但是!!我居然学别人在开头define了max和min,导致嵌套了个寂寞,以后要么自己定义函数,要么直接用algorithm中的max,别再define了!
代码里还是有蛮多细节技巧的,仔细看看
#include<cstdio>
#include<cstring>
#include<algorithm>
//#define min(a, b) a>=b?b:a //←罪魁祸首!!!
//#define max(a, b) a>=b?a:b //←你也是!!!!
typedef long long ll;
using namespace std;
const int maxn = 1000 + 100;
const int maxw = 10000 + 100;
ll c[maxn], nb[maxw];
ll dp[maxn][maxw];//dp[i][j]表示走到第i棵树下,这时候已经买了j只鸟,剩下的钱数
//dp[i][j] = max{dp[i-1][j - k] - k * c[i-1] + x}
int main(){
ll n, w, b, x;//走一棵树加x钱,买一只鸟增加容量b;
scanf("%lld %lld %lld %lld", &n, &w, &b, &x);
int mana = w, max_mana = w;
for(int i = 0; i < n; i++) scanf("%d", &nb[i]);
for(int i = 0; i < n; i++) scanf("%d", &c[i]);
ll sum = 0;
memset(dp, -1, sizeof(dp));//最后还为-1的dp就是不可能达到的
dp[0][0] = w;//当i等于0的时候,即在第一棵树下的时候,这时候一只鸟都没买,所以当i=0时只有j=0这种情况
for(int i = 1; i <= n; i++){//从刚到第二棵树下开始循环(正在第二颗树下,还没决定在第二颗树买几只鸟)
sum += nb[i-1];//此时站在第i棵树下,最多买了sum只鸟,也就是前面的全买了
for(int j = 0; j <= sum; j++){
for(int k = 0; k <= nb[i-1] && k <= j ; k++){//这个循环用来解决dp[i][j]的最大值能是多少
if(dp[i-1][j-k] == -1){/*printf("j = %d, k = %d, dp[%d][%d] = %d\n", j, k, i-1, j-k,dp[i-1][j-k]);*/continue;}
if(dp[i-1][j-k] - k * c[i-1] < 0 ) {/*printf("nonono!\nk = %d, j = %d\n", k, j);*/continue;}//没钱了, 这时候还没走到下一棵树,所以不要加x
dp[i][j] = max(dp[i][j], min(dp[i-1][j-k] - k*c[i-1] + x, w + j * b));//更新最大的dp,同时注意钱包的上限
//printf("dp[i-1][j-k] - k*c[i-1] + x为%d\n此时w+j*b为%d, dp[%d][%d]应该为%d\n", dp[i-1][j-k] - k*c[i-1] + x,w+j*b, i, j, min(dp[i-1][j-k] - k*c[i-1] + x, w + j * b));
}
//printf("dp[%d][%d] = %d, sum = %d\n", i, j, dp[i][j], sum);
}
}
ll ans;
for(int i = 0; i <= sum; i++)
if(dp[n][i] != -1) ans = i;
printf("%lld\n", ans);
return 0;
}
Codeforces 922 E Birds (背包dp)被define坑了的一题的更多相关文章
- Codeforces 864E Fire(背包DP)
背包DP,决策的时候记一下 jc[i][j]=1 表示第i个物品容量为j的时候要选,输出方案的时候倒推就好了 #include<iostream> #include<cstdlib& ...
- Codeforces Codeforces Round #319 (Div. 2) B. Modulo Sum 背包dp
B. Modulo Sum Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/577/problem/ ...
- Codeforces 730J:Bottles(背包dp)
http://codeforces.com/problemset/problem/730/J 题意:有n个瓶子,每个瓶子有一个当前里面的水量,还有一个瓶子容量,问要把所有的当前水量放到尽量少的瓶子里至 ...
- Codeforces 946 课程表背包DP 数位DFS构造
A B 给你A,B 两个数 1.a=0 OR b=0 break 2.a>=2b a=a-2b 3.b>=2a b=b-2a 如果只是单纯模拟肯定会超时 ...
- Educational Codeforces Round 69 (Rated for Div. 2) D. Yet Another Subarray Problem 背包dp
D. Yet Another Subarray Problem You are given an array \(a_1, a_2, \dots , a_n\) and two integers \( ...
- 背包dp整理
01背包 动态规划是一种高效的算法.在数学和计算机科学中,是一种将复杂问题的分成多个简单的小问题思想 ---- 分而治之.因此我们使用动态规划的时候,原问题必须是重叠的子问题.运用动态规划设计的算法比 ...
- G - Surf Gym - 100819S -逆向背包DP
G - Surf Gym - 100819S 思路 :有点类似 逆向背包DP , 因为这些事件发生后是对后面的时间有影响. 所以,我们 进行逆向DP,具体 见代码实现. #include<bit ...
- luogu 4377 Talent show 01分数规划+背包dp
01分数规划+背包dp 将分式下面的部分向右边挪过去,通过二分答案验证, 注意二分答案中如果验证的mid是int那么l=mid+1,r=mid-1,double类型中r=mid,l=mid; 背包dp ...
- bzoj1625:[Usaco2007 Dec]宝石手镯(背包dp板子)
1625: [Usaco2007 Dec]宝石手镯 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1349 Solved: 954[Submit][St ...
随机推荐
- linux搭建简单的web服务器
主要想法是:使用虚拟机的Ubuntu系统搭建http服务器,然后在window的浏览器上测试 1.先测试windows和虚拟机上的ubuntu能否相互ping通 2.下载http.tar.gz并拷贝到 ...
- 探究Dubbo的拓展机制: 上
这篇博文是我决心深度学习Dubbo框架时记录的笔记, 主题是Dubbo的拓展点, 下面的几个部分相对来说比较零散, 貌似是不和主题挂钩的 , 并且是一些很冷门的知识点 , 但是它们确实是深入学习Dub ...
- oracle官网下载jdk跑不动太慢了,给出快速下载方式mac
oracle官网下载jdk8跑不动太慢了,给出快速下载方式 之前在oracle官网下载jdk1.8实在速度太慢,只有20K左右的下载速度,有时候甚至不动,最关键的慢也就算了,cookie有效期有限,有 ...
- 使用JavaMail发送邮件(含文本/附件/图片)的工具类
记录利用公司内搭建的smtp邮件服务器,使用javax mail发送邮件的程序 package com.test.mailTest; import java.util.Date; import jav ...
- Go 每日一库之 flag
缘起 我一直在想,有什么方式可以让人比较轻易地保持每日学习,持续输出的状态.写博客是一种方式,但不是每天都有想写的,值得写的东西. 有时候一个技术比较复杂,写博客的时候经常会写着写着发现自己的理解有偏 ...
- 原生javascript实现选项卡(基础版)
一.实现原理 1.主要运用“排他思想”,在设置当前元素前,先把相应元素恢复到默认状态 2.给相应元素添加下标的应用 二.代码展示 <!DOCTYPE html> <html> ...
- must appear in the GROUP BY clause or be used in an aggregate function
今天在分组统计的时候pgsql报错 must appear in the GROUP BY clause or be used in an aggregate function,在mysql里面是可以 ...
- Docker学习(九)Volumn容器间共享数据
Docker学习(九)Volumn容器间共享数据 volume是什么 volume在英文中是容量的意思, 在docker中是数据卷的意思,是用来保存数据的容器 为什么要进行数据共享 在集群中有多台to ...
- rhel
1.查看硬盘大小 df -h 2.查看内存大小 free -h 3.配置主键名称 vim /etc/hostname# 查看 hostnamehostname 4.挂载镜像 mkdir -p /med ...
- selenium之窗口滚动
在这里和大家分享一下,selenium里面常用于处理窗口滚动的方法. location_once_scrolled_into_view 一般用于定位窗口底部元素.将窗口拉到最底部. window.sc ...