网页链接:点击打开链接

Apart from plush toys, Imp is a huge fan of little yellow birds!

To summon birds, Imp needs strong magic. There are n trees in a row on an alley in a park, there is a nest on each of the trees. In the i-th nest there are ci birds; to summon one bird from this nest Imp needs to stay under this tree and it costs him costi points of mana. However, for each bird summoned, Imp increases his mana capacity by B points. Imp summons birds one by one, he can summon any number from 0 to ci birds from the i-th nest.

Initially Imp stands under the first tree and has W points of mana, and his mana capacity equals W as well. He can only go forward, and each time he moves from a tree to the next one, he restores X points of mana (but it can't exceed his current mana capacity). Moving only forward, what is the maximum number of birds Imp can summon?

Input

The first line contains four integers nWBX (1 ≤ n ≤ 103, 0 ≤ W, B, X ≤ 109) — the number of trees, the initial points of mana, the number of points the mana capacity increases after a bird is summoned, and the number of points restored when Imp moves from a tree to the next one.

The second line contains n integers c1, c2, ..., cn (0 ≤ ci ≤ 104) — where ci is the number of birds living in the i-th nest. It is guaranteed that .

The third line contains n integers cost1, cost2, ..., costn (0 ≤ costi ≤ 109), where costi is the mana cost to summon a bird from the i-th nest.

Output

Print a single integer — the maximum number of birds Imp can summon.

Examples
input

Copy
2 12 0 4
3 4
4 2
output
6
input

Copy
4 1000 10 35
1 2 4 5
1000 500 250 200
output
5
input

Copy
2 10 7 11
2 10
6 1
output
11
Note

In the first sample base amount of Imp's mana is equal to 12 (with maximum capacity also equal to 12). After he summons two birds from the first nest, he loses 8 mana points, although his maximum capacity will not increase (since B = 0). After this step his mana will be 4 of 12; during the move you will replenish 4 mana points, and hence own 8 mana out of 12 possible. Now it's optimal to take 4 birds from the second nest and spend 8 mana. The final answer will be — 6.

In the second sample the base amount of mana is equal to 1000. The right choice will be to simply pick all birds from the last nest. Note that Imp's mana doesn't restore while moving because it's initially full.

题目大意:一共有n棵树,刚开始有w元,第i棵树上有nb[i]只鸟,第i棵树上的鸟要花c[i]元,每走一棵树增加x元,每买一个鸟会让钱包容量增加b,问最多能买到几只鸟?

解法:背包dp,不过这题要根据数据范围选好下标,下标不能是1e9的钱数,dp的值不能是鸟数,鸟数可以用来当成下标

dp[i][j]表示走到第i棵树下,这时候已经买了j只鸟,剩下的钱数,dp[i][j] = max{dp[i-1][j - k] - k * c[i-1] + x}

坑点:每次更新dp[i][j]的时候钱不能超过钱包容量,而且要算出买几只鸟能让dp[i][j]最大,所以用了个嵌套的max,min,但是!!我居然学别人在开头define了max和min,导致嵌套了个寂寞,以后要么自己定义函数,要么直接用algorithm中的max,别再define了!

代码里还是有蛮多细节技巧的,仔细看看

#include<cstdio>
#include<cstring>
#include<algorithm>
//#define min(a, b) a>=b?b:a //←罪魁祸首!!!
//#define max(a, b) a>=b?a:b //←你也是!!!!
typedef long long ll;
using namespace std; const int maxn = 1000 + 100;
const int maxw = 10000 + 100;
ll c[maxn], nb[maxw];
ll dp[maxn][maxw];//dp[i][j]表示走到第i棵树下,这时候已经买了j只鸟,剩下的钱数
//dp[i][j] = max{dp[i-1][j - k] - k * c[i-1] + x} int main(){
ll n, w, b, x;//走一棵树加x钱,买一只鸟增加容量b;
scanf("%lld %lld %lld %lld", &n, &w, &b, &x);
int mana = w, max_mana = w;
for(int i = 0; i < n; i++) scanf("%d", &nb[i]);
for(int i = 0; i < n; i++) scanf("%d", &c[i]);
ll sum = 0;
memset(dp, -1, sizeof(dp));//最后还为-1的dp就是不可能达到的
dp[0][0] = w;//当i等于0的时候,即在第一棵树下的时候,这时候一只鸟都没买,所以当i=0时只有j=0这种情况
for(int i = 1; i <= n; i++){//从刚到第二棵树下开始循环(正在第二颗树下,还没决定在第二颗树买几只鸟)
sum += nb[i-1];//此时站在第i棵树下,最多买了sum只鸟,也就是前面的全买了 for(int j = 0; j <= sum; j++){
for(int k = 0; k <= nb[i-1] && k <= j ; k++){//这个循环用来解决dp[i][j]的最大值能是多少
if(dp[i-1][j-k] == -1){/*printf("j = %d, k = %d, dp[%d][%d] = %d\n", j, k, i-1, j-k,dp[i-1][j-k]);*/continue;}
if(dp[i-1][j-k] - k * c[i-1] < 0 ) {/*printf("nonono!\nk = %d, j = %d\n", k, j);*/continue;}//没钱了, 这时候还没走到下一棵树,所以不要加x
dp[i][j] = max(dp[i][j], min(dp[i-1][j-k] - k*c[i-1] + x, w + j * b));//更新最大的dp,同时注意钱包的上限
//printf("dp[i-1][j-k] - k*c[i-1] + x为%d\n此时w+j*b为%d, dp[%d][%d]应该为%d\n", dp[i-1][j-k] - k*c[i-1] + x,w+j*b, i, j, min(dp[i-1][j-k] - k*c[i-1] + x, w + j * b));
}
//printf("dp[%d][%d] = %d, sum = %d\n", i, j, dp[i][j], sum);
} }
ll ans;
for(int i = 0; i <= sum; i++)
if(dp[n][i] != -1) ans = i;
printf("%lld\n", ans);
return 0;
}

Codeforces 922 E Birds (背包dp)被define坑了的一题的更多相关文章

  1. Codeforces 864E Fire(背包DP)

    背包DP,决策的时候记一下 jc[i][j]=1 表示第i个物品容量为j的时候要选,输出方案的时候倒推就好了 #include<iostream> #include<cstdlib& ...

  2. Codeforces Codeforces Round #319 (Div. 2) B. Modulo Sum 背包dp

    B. Modulo Sum Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/577/problem/ ...

  3. Codeforces 730J:Bottles(背包dp)

    http://codeforces.com/problemset/problem/730/J 题意:有n个瓶子,每个瓶子有一个当前里面的水量,还有一个瓶子容量,问要把所有的当前水量放到尽量少的瓶子里至 ...

  4. Codeforces 946 课程表背包DP 数位DFS构造

    A B 给你A,B 两个数      1.a=0 OR b=0 break      2.a>=2b a=a-2b        3.b>=2a b=b-2a 如果只是单纯模拟肯定会超时 ...

  5. Educational Codeforces Round 69 (Rated for Div. 2) D. Yet Another Subarray Problem 背包dp

    D. Yet Another Subarray Problem You are given an array \(a_1, a_2, \dots , a_n\) and two integers \( ...

  6. 背包dp整理

    01背包 动态规划是一种高效的算法.在数学和计算机科学中,是一种将复杂问题的分成多个简单的小问题思想 ---- 分而治之.因此我们使用动态规划的时候,原问题必须是重叠的子问题.运用动态规划设计的算法比 ...

  7. G - Surf Gym - 100819S -逆向背包DP

    G - Surf Gym - 100819S 思路 :有点类似 逆向背包DP , 因为这些事件发生后是对后面的时间有影响. 所以,我们 进行逆向DP,具体 见代码实现. #include<bit ...

  8. luogu 4377 Talent show 01分数规划+背包dp

    01分数规划+背包dp 将分式下面的部分向右边挪过去,通过二分答案验证, 注意二分答案中如果验证的mid是int那么l=mid+1,r=mid-1,double类型中r=mid,l=mid; 背包dp ...

  9. bzoj1625:[Usaco2007 Dec]宝石手镯(背包dp板子)

    1625: [Usaco2007 Dec]宝石手镯 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1349  Solved: 954[Submit][St ...

随机推荐

  1. 清晰架构(Clean Architecture)的Go微服务: 程序容器(Application Container)

    清晰架构(Clean Architecture)的一个理念是隔离程序的框架,使框架不会接管你的应用程序,而是由你决定何时何地使用它们.在本程序中,我特意不在开始时使用任何框架,因此我可以更好地控制程序 ...

  2. linux搭建简单的web服务器

    主要想法是:使用虚拟机的Ubuntu系统搭建http服务器,然后在window的浏览器上测试 1.先测试windows和虚拟机上的ubuntu能否相互ping通 2.下载http.tar.gz并拷贝到 ...

  3. cannot open git-upload-pack,cannot open git-receive-pack,Can't connect to any URI错误解决方法eclipse

    cannot open git-upload-pack,cannot open git-receive-pack,Can't connect to any URI错误解决方法eclipse 解决ecl ...

  4. AcWing 247. 亚特兰蒂斯 | 扫描线

    传送门 题目描述 有几个古希腊书籍中包含了对传说中的亚特兰蒂斯岛的描述. 其中一些甚至包括岛屿部分地图. 但不幸的是,这些地图描述了亚特兰蒂斯的不同区域. 您的朋友Bill必须知道地图的总面积. 你自 ...

  5. 头条面试竟然问我maven

    maven package和maven install 有什么区别? 你常用的maven命令有哪些? <dependencyManagement> 是干什么的? 还有用过其它构建工具吗? ...

  6. pom文件继承与聚合

    1.简介 pom.xml文件是Maven进行工作的主要配置文件.在这个文件中我们可以配置Maven项目的groupId.artifactId和version等Maven项目必须的元素:可以配置Mave ...

  7. 基于iTextSharp的PDF操作(PDF打印,PDF下载)

    基于iTextSharp的PDF操作(PDF打印,PDF下载) 准备 1. iTextSharp的简介 iTextSharp是一个移植于java平台的iText项目,被封装成c#的组件来用于C#生成P ...

  8. python小知识点总结

    小知识点总结 1.python2和python3的区别   python2 python3 默认编码 ascii utf-8 input() raw_input() input() print 可以不 ...

  9. C++模板编程与宏编程经验谈

    C++模板编程与宏编程经验谈 有人说C 与C++的不同主要是因为C++支持模板,不要说区别是面向对象化编程,因为C同样能很好的实现对象化编程,面向对象化其实只是思想,在很多语言中都能实现,区别在于实现 ...

  10. nested exception is org.springframework.context.ApplicationContextException: Unable to start ServletWebServerApplicationContext due to missing ServletWebServerFactory bean.报错解决

    近期在学springboot,学的时候遇到这个错,网上查了好多,改了不行,后来发现自己的配置类没有加@SpringBootApplication注解 Exception encountered dur ...