题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3143

分析:

易得如果知道了每条边经过的数学期望,那就可以贪心着按每条边的期望的大小赋值,所以问题就是如何求每条边的期望。

直接求没办法求的,可以先求出每个点经过的期望。

易得f[i]=∑f[j]/d[j] j->i有边

特殊的,对于起点,因为刚开始就在,所以应该是f[1]=1+∑f[j]/d[j];对于终点,到了终点后不能再到其他节点,所以对其他边并没有贡献,所以f[n]=0

然后就可以高斯消元解方程组,解得每个点的期望

那么对于边(u,v),这个边的期望(即经过次数)就是f[u]/d[u]+f[v]/d[v]

那么对于每个边的期望排序,期望小的对应编号大的,计算一下就行了。(排序不等式)

[BZOJ 3143][HNOI2013]游走(数学期望)的更多相关文章

  1. BZOJ.3143.[HNOI2013]游走(概率 期望 高斯消元)

    题目链接 参考 远航之曲 把走每条边的概率乘上分配的标号就是它的期望,所以我们肯定是把大的编号分配给走的概率最低的边. 我们只要计算出经过所有点的概率,就可以得出经过一条边(\(u->v\))的 ...

  2. bzoj 3143: [Hnoi2013]游走 高斯消元

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1026  Solved: 448[Submit][Status] ...

  3. bzoj 3143 [Hnoi2013]游走 期望dp+高斯消元

    [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3394  Solved: 1493[Submit][Status][Disc ...

  4. BZOJ 3143 HNOI2013 游走 高斯消元 期望

    这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号 ...

  5. BZOJ 3143: [Hnoi2013]游走 概率与期望+高斯消元

    Description 一个无向连通图,顶点从1编号到N,边从1编号到M.小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获 ...

  6. bzoj 3143: [Hnoi2013]游走

    Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点, ...

  7. BZOJ 3143: [Hnoi2013]游走 [概率DP 高斯消元]

    一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分 ...

  8. bzoj 3143 [Hnoi2013]游走(贪心,高斯消元,期望方程)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3143 [题意] 给定一个无向图,从1走到n,走过一条边得到的分数为边的标号,问一个边的 ...

  9. ●BZOJ 3143 [Hnoi2013]游走

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3143题解: 期望dp,高斯消元 首先有这样一种贪心分配边的编号的方案:(然后我没想到,233 ...

随机推荐

  1. Spring 通过XML配置文件以及通过注解形式来AOP 来实现前置,环绕,异常通知,返回后通知,后通知

    本节主要内容: 一.Spring 通过XML配置文件形式来AOP 来实现前置,环绕,异常通知     1. Spring AOP  前置通知 XML配置使用案例     2. Spring AOP   ...

  2. confluence wiki搭建使用

    1.准备工作 服务器环境:centos6.6x64 IP:172.16.0.203 1)软件包,地址下载 http://pan.baidu.com/s/1ntlBCQP  ,把几个 软件包放在服务器上 ...

  3. How to use python remove the '^M' when copy words from Windows to Linux

    今天帮同事用Python写了一个小工具,实现了在linux下批量文件名和去掉windows 文件到linux过程中产生^M的脚本,代码如下: !/opt/exptools/bin/python imp ...

  4. Oracle常用plsql

    String aggr http://www.oracle-base.com/articles/misc/string-aggregation-techniques.php     SELECT 'S ...

  5. 《TCP/IP详解 卷一》读书笔记-----TCP连接建立

    1.在每个TCP报文段中,头部的flag字段里的SYN,FIN,RST,PSH可以多个有效,并没有限定为必须只有一个 2.TCP连接建立过程: 1)客户端发送一个SYN报文段,其中包含了客户端要传送的 ...

  6. 【MVC 4】1.第一个 MVC 应用程序

    作者:[美]Adam Freeman      来源:<精通ASP.NET MVC 4> ASP.NET MVC 是微软的一个 Web开发框架,它整合了“模型—视图—控制器(MVC)”架构 ...

  7. POJ 2263 Heavy Cargo 多种解法

    好题.这题可以有三种解法:1.Dijkstra   2.优先队列   3.并查集 我这里是优先队列的实现,以后有时间再用另两种方法做做..方法就是每次都选当前节点所连的权值最大的边,然后BFS搜索. ...

  8. Linux 常用基本命令

    这两天有俩哥们问了我linux的事,问我在工作中需不需要用到,需不需要学会 一个是工作1年不到的,我跟他说,建议你学学,在以后肯定是要用到的,虽然用到的机会不多,但是会总比不会好 另一个是工作6年的, ...

  9. AC日记——手写堆ac合并果子(傻子)

    今天整理最近的考试题 发现一个东西叫做优先队列 priority_queue(说白了就是大根堆) 但是 我对堆的了解还是很少的 所以 我决定手写一个堆 于是我写了一个简单的堆 手写的堆说白了就是个二叉 ...

  10. Windows系统安装Oracle 11g客户端

    一.下载 http://www.oracle.com/technetwork/database/enterprise-edition/downloads/index.html以下网址来源此官方下载页网 ...