[BZOJ 3143][HNOI2013]游走(数学期望)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3143
分析:
易得如果知道了每条边经过的数学期望,那就可以贪心着按每条边的期望的大小赋值,所以问题就是如何求每条边的期望。
直接求没办法求的,可以先求出每个点经过的期望。
易得f[i]=∑f[j]/d[j] j->i有边
特殊的,对于起点,因为刚开始就在,所以应该是f[1]=1+∑f[j]/d[j];对于终点,到了终点后不能再到其他节点,所以对其他边并没有贡献,所以f[n]=0
然后就可以高斯消元解方程组,解得每个点的期望
那么对于边(u,v),这个边的期望(即经过次数)就是f[u]/d[u]+f[v]/d[v]
那么对于每个边的期望排序,期望小的对应编号大的,计算一下就行了。(排序不等式)
[BZOJ 3143][HNOI2013]游走(数学期望)的更多相关文章
- BZOJ.3143.[HNOI2013]游走(概率 期望 高斯消元)
题目链接 参考 远航之曲 把走每条边的概率乘上分配的标号就是它的期望,所以我们肯定是把大的编号分配给走的概率最低的边. 我们只要计算出经过所有点的概率,就可以得出经过一条边(\(u->v\))的 ...
- bzoj 3143: [Hnoi2013]游走 高斯消元
3143: [Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1026 Solved: 448[Submit][Status] ...
- bzoj 3143 [Hnoi2013]游走 期望dp+高斯消元
[Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3394 Solved: 1493[Submit][Status][Disc ...
- BZOJ 3143 HNOI2013 游走 高斯消元 期望
这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号 ...
- BZOJ 3143: [Hnoi2013]游走 概率与期望+高斯消元
Description 一个无向连通图,顶点从1编号到N,边从1编号到M.小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获 ...
- bzoj 3143: [Hnoi2013]游走
Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点, ...
- BZOJ 3143: [Hnoi2013]游走 [概率DP 高斯消元]
一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分 ...
- bzoj 3143 [Hnoi2013]游走(贪心,高斯消元,期望方程)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3143 [题意] 给定一个无向图,从1走到n,走过一条边得到的分数为边的标号,问一个边的 ...
- ●BZOJ 3143 [Hnoi2013]游走
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3143题解: 期望dp,高斯消元 首先有这样一种贪心分配边的编号的方案:(然后我没想到,233 ...
随机推荐
- nodejs 导出excel
nodejs 对查询数据生成excel并下载,采用方式先生成本excel文件,然后再下载:通过比较采用excel-export插件代码如下: excel.js代码: var extend = requ ...
- poj-1083-Moving Tables(hdu-1050)
Moving Tables Time Limit: 1000MS Memory Limit: 10000K Total Submissions: Accepted: Description The f ...
- 【NOIP提高组2015D2T1】uva 714 copying books【二分答案】——yhx
Before the invention of book-printing, it was very hard to make a copy of a book. All the contents h ...
- 2014 Super Training #3 H Tmutarakan Exams --容斥原理
原题: URAL 1091 http://acm.timus.ru/problem.aspx?space=1&num=1091 题意:要求找出K个不同的数字使他们有一个大于1的公约数,且所有 ...
- IO流的练习5 —— 读取文件中的字符串,排序后写入另一文件中
需求:已知s.txt文件中有这样的一个字符串:“hcexfgijkamdnoqrzstuvwybpl” 请编写程序读取数据内容,把数据排序后写入ss.txt中. 分析: A:读取文件中的数据 B:把数 ...
- Android TextView中文字通过SpannableString来设置超链接、颜色、字体等属性
在Android中,TextView是我们最常用的用来显示文本的控件. 一般情况下,TextView中的文本都是一个样式.那么如何对于TextView中各个部分的文本来设置字体,大小,颜色,样式,以及 ...
- ios开发中如何隐藏各种bar
转载自http://www.cnblogs.com/lovecode/articles/2234557.html 状态条Status Bar [UIApplication sharedApplicat ...
- poj 1163 The Triangle
The Triangle Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 43809 Accepted: 26430 De ...
- DotNet二维码操作组件ThoughtWorks.QRCode
DotNet二维码操作组件ThoughtWorks.QRCode 在生活中有一种东西几乎已经快要成为我们的另一个电子"身份证",那就是二维码.无论是在软件开发的过程中,还是在普通用 ...
- [py]os.walk爬目录&sys.argv灵活获取参数
1, 遍历目录 os.walk('/tmp') os.next() 2,sys.argv ######################################## py@lanny:~/t ...