对于一个连通块,取一个点进行dfs,得到一棵dfs搜索树,则这棵树的深度不超过10,且所有额外边都是前向边。

对于每个点x,设S为三进制状态,S第i位表示根到x路径上深度为i的点的状态:

0:选了

1:没选,且没满足

2:没选,且已满足

设f[i][j]表示考虑根到x路径上深度为i的点时这些点的状态为j时的最小费用,然后按DFS序进行DP即可。

时间复杂度$O((n+m)3^{10})$,空间复杂度$O(10\times3^{10})$。

#include<cstdio>
const int N=20010,M=50010,K=11,inf=2000000000;
int n,m,i,x,y,a[N],g[N],v[M],nxt[M],ed,vis[N],d[N],q[K],pow[K],f[K][59050],ans;
inline void add(int x,int y){v[++ed]=y;nxt[ed]=g[x];g[x]=ed;}
inline int bit(int x,int y){return x/pow[y]%3;}
inline void up(int&x,int y){if(x>y)x=y;}
inline int min(int x,int y){return x<y?x:y;}
void dfs(int x,int y){
vis[x]=1,d[x]=y;
if(!y)f[0][0]=a[x],f[0][1]=0,f[0][2]=inf;
else{
int cnt=0;
for(int i=g[x];i;i=nxt[i]){
int u=v[i];
if(vis[u]&&d[u]<y)q[cnt++]=d[u];
}
for(int S=pow[y+1]-1;~S;S--)f[y][S]=inf;
for(int S=pow[y]-1;~S;S--){
int U=1,V=S;
for(int i=0;i<cnt;i++)if(bit(S,q[i])==0)U=2;else if(bit(S,q[i])==1)V+=pow[q[i]];
up(f[y][S+U*pow[y]],f[y-1][S]);
up(f[y][V],f[y-1][S]+a[x]);
}
}
for(int i=g[x];i;i=nxt[i]){
int u=v[i];
if(!vis[u]){
dfs(u,y+1);
for(int S=0;S<pow[y+1];S++)f[y][S]=min(f[y+1][S],f[y+1][S+2*pow[y+1]]);
}
}
}
int main(){
for(pow[0]=i=1;i<K;i++)pow[i]=pow[i-1]*3;
scanf("%d%d",&n,&m);
for(i=1;i<=n;i++)scanf("%d",&a[i]);
while(m--)scanf("%d%d",&x,&y),add(x,y),add(y,x);
for(i=1;i<=n;i++)if(!vis[i])dfs(i,0),ans+=min(f[0][0],f[0][2]);
return printf("%d",ans),0;
}

  

BZOJ3836 : [Poi2014]Tourism的更多相关文章

  1. BZOJ3836 [Poi2014]Tourism 【树形dp +状压dp】

    题目链接 BZOJ3836 题解 显然这是个\(NP\)完全问题,此题的解决全仗任意两点间不存在节点数超过10的简单路径的性质 这意味着什么呢? \(dfs\)树深度不超过\(10\) \(10\)很 ...

  2. [POI2014]Tourism

    题目大意: 给定一个$n(n\le20000)$条个点,$m(m\le25000)$条边的无向图,保证图中最长路径上的点数不超过$10$.对一个点染色的代价是$w_i$.求使得每个结点都被染色或至少有 ...

  3. @bzoj - 3836@ [Poi2014]Tourism

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定一个n个点,m条边的无向图,其中你在第i个点建立旅游站点的费 ...

  4. POI2014题解

    POI2014题解 [BZOJ3521][Poi2014]Salad Bar 把p当作\(1\),把j当作\(-1\),然后做一遍前缀和. 一个合法区间\([l,r]\)要满足条件就需要满足所有前缀和 ...

  5. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  6. BZOJ 3524: [Poi2014]Couriers [主席树]

    3524: [Poi2014]Couriers Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 1892  Solved: 683[Submit][St ...

  7. BZOJ 3524: [Poi2014]Couriers

    3524: [Poi2014]Couriers Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 1905  Solved: 691[Submit][St ...

  8. HDU 4049 Tourism Planning(动态规划)

    Tourism Planning Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  9. [BZOJ3872][Poi2014]Ant colony

    [BZOJ3872][Poi2014]Ant colony 试题描述 There is an entrance to the ant hill in every chamber with only o ...

随机推荐

  1. 使用nginx lua实现网站统计中的数据收集

    导读网站数据统计分析工具是各网站站长和运营人员经常使用的一种工具,常用的有 谷歌分析.百度统计和腾讯分析等等.所有这些统计分析工具的第一步都是网站访问数据的收集.目前主流的数据收集方式基本都是基于ja ...

  2. [POJ1383]Labyrinth

    [POJ1383]Labyrinth 试题描述 The northern part of the Pyramid contains a very large and complicated labyr ...

  3. facedetect

    继续学习大神的博文http://www.cnblogs.com/tornadomeet/archive/2012/03/22/2411318.html

  4. 自动化运维之puppet的学习(如何找到你需要的模块)

    https://forge.puppetlabs.com/  puppet 模块下载 http://kisspuppet.com/2014/01/14/puppet_forge_modules/ pu ...

  5. HDOJ 1075

    字典树 9890974 2013-12-25 15:31:06 Accepted 1075 468MS 59832K 1342 B G++ 泽泽 #include<stdio.h> #in ...

  6. Linux--YUM 安装 nginx php mysql

    Linux--YUM 安装 nginx php mysql (2011-11-13 11:27:14) 转载▼ 标签: 杂谈 分类: Linux 1.先新建一个 repo # vi /etc/yum. ...

  7. 【Python】Python XML 读写

    class ACTIVE_FILE_PROTECT_RULE_VIEW(APIView): renderer_classes = (JSONRenderer, BrowsableAPIRenderer ...

  8. sharepoint获取域名和当前登录的应为名字

    string a =  SPContext.Current.Web.CurrentUser.ToString(); int length = a.IndexOf("w|", 0) ...

  9. php开发网站编码统一问题

    一个良好的网站代码整洁,注释适当是最基本的,也是好的习惯,这可以避免以后的非常乱了自己感觉都乱,一旦重构麻烦就大了耗时耗力,其中网站整个体系的编码是最重要的一个方面,为了网站的稳定性建议php程序,H ...

  10. win10远程桌面连接

    有的情况下,Win10设置了允许远程桌面连接后,远程主机仍然不能桌面连接到目标主机上,这时可以在目标主机上尝试如下修改: 开始-->运行->gpedit.msc->计算机配置-> ...