BZOJ3836 : [Poi2014]Tourism
对于一个连通块,取一个点进行dfs,得到一棵dfs搜索树,则这棵树的深度不超过10,且所有额外边都是前向边。
对于每个点x,设S为三进制状态,S第i位表示根到x路径上深度为i的点的状态:
0:选了
1:没选,且没满足
2:没选,且已满足
设f[i][j]表示考虑根到x路径上深度为i的点时这些点的状态为j时的最小费用,然后按DFS序进行DP即可。
时间复杂度$O((n+m)3^{10})$,空间复杂度$O(10\times3^{10})$。
#include<cstdio>
const int N=20010,M=50010,K=11,inf=2000000000;
int n,m,i,x,y,a[N],g[N],v[M],nxt[M],ed,vis[N],d[N],q[K],pow[K],f[K][59050],ans;
inline void add(int x,int y){v[++ed]=y;nxt[ed]=g[x];g[x]=ed;}
inline int bit(int x,int y){return x/pow[y]%3;}
inline void up(int&x,int y){if(x>y)x=y;}
inline int min(int x,int y){return x<y?x:y;}
void dfs(int x,int y){
vis[x]=1,d[x]=y;
if(!y)f[0][0]=a[x],f[0][1]=0,f[0][2]=inf;
else{
int cnt=0;
for(int i=g[x];i;i=nxt[i]){
int u=v[i];
if(vis[u]&&d[u]<y)q[cnt++]=d[u];
}
for(int S=pow[y+1]-1;~S;S--)f[y][S]=inf;
for(int S=pow[y]-1;~S;S--){
int U=1,V=S;
for(int i=0;i<cnt;i++)if(bit(S,q[i])==0)U=2;else if(bit(S,q[i])==1)V+=pow[q[i]];
up(f[y][S+U*pow[y]],f[y-1][S]);
up(f[y][V],f[y-1][S]+a[x]);
}
}
for(int i=g[x];i;i=nxt[i]){
int u=v[i];
if(!vis[u]){
dfs(u,y+1);
for(int S=0;S<pow[y+1];S++)f[y][S]=min(f[y+1][S],f[y+1][S+2*pow[y+1]]);
}
}
}
int main(){
for(pow[0]=i=1;i<K;i++)pow[i]=pow[i-1]*3;
scanf("%d%d",&n,&m);
for(i=1;i<=n;i++)scanf("%d",&a[i]);
while(m--)scanf("%d%d",&x,&y),add(x,y),add(y,x);
for(i=1;i<=n;i++)if(!vis[i])dfs(i,0),ans+=min(f[0][0],f[0][2]);
return printf("%d",ans),0;
}
BZOJ3836 : [Poi2014]Tourism的更多相关文章
- BZOJ3836 [Poi2014]Tourism 【树形dp +状压dp】
题目链接 BZOJ3836 题解 显然这是个\(NP\)完全问题,此题的解决全仗任意两点间不存在节点数超过10的简单路径的性质 这意味着什么呢? \(dfs\)树深度不超过\(10\) \(10\)很 ...
- [POI2014]Tourism
题目大意: 给定一个$n(n\le20000)$条个点,$m(m\le25000)$条边的无向图,保证图中最长路径上的点数不超过$10$.对一个点染色的代价是$w_i$.求使得每个结点都被染色或至少有 ...
- @bzoj - 3836@ [Poi2014]Tourism
目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定一个n个点,m条边的无向图,其中你在第i个点建立旅游站点的费 ...
- POI2014题解
POI2014题解 [BZOJ3521][Poi2014]Salad Bar 把p当作\(1\),把j当作\(-1\),然后做一遍前缀和. 一个合法区间\([l,r]\)要满足条件就需要满足所有前缀和 ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- BZOJ 3524: [Poi2014]Couriers [主席树]
3524: [Poi2014]Couriers Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 1892 Solved: 683[Submit][St ...
- BZOJ 3524: [Poi2014]Couriers
3524: [Poi2014]Couriers Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 1905 Solved: 691[Submit][St ...
- HDU 4049 Tourism Planning(动态规划)
Tourism Planning Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- [BZOJ3872][Poi2014]Ant colony
[BZOJ3872][Poi2014]Ant colony 试题描述 There is an entrance to the ant hill in every chamber with only o ...
随机推荐
- 对target="framename"的理解(实现分页的demo)
先上图,说明一下我主要想实现什么功能. 一.演示图 演示首页: 演示内容页(包括按钮切换页+模板内容页): 演示首页到演示内容页的一个演变过程:
- win7安装apache或者php 5.7缺少vcruntime140.dll的问题
1.确定win7 系统是否是win7 sp1 版本.因为Visual C++ Redistributable for Visual Studio 2015 需要win7的sp1包的支持才能安装成功! ...
- Apache同时支持PHP和Python的配置方法
一.http://www.oschina.net 网站中的一个问答内容: 原来把 WSGIScriptAlias / "D:/project/ddd/django.wsgi" ...
- 异常详细信息: System.Data.SqlClient.SqlException:用户 'IIS APPPOOL\DefaultAppPool' 登录失败解决办法
1.安全性---登录名---新建登录名 2.常规----搜索 3.添加SERVICE用户-- 4.服务器角色---勾上sysadmin: IIS中: 应用程序池---对应的程序池上右键---高级设置 ...
- hdu1151 二分图(无回路有向图)的最小路径覆盖 Air Raid
欢迎参加——BestCoder周年纪念赛(高质量题目+多重奖励) Air Raid Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65 ...
- Linux系统管理员面试50题
命令nslookup是做什么的? Nslookup 是一个 监测网络中 DNS 服务器是否能正确实现域名解析的命令行工具. 你如何把CPU占用率最高的进程显示出来? top -c 按照cpu排序 如果 ...
- 【Network】一张图看懂 Reactor 与 Proactor 模型的区别
首先来看看Reactor模式,Reactor模式应用于同步I/O的场景.我们以读操作为例来看看Reactor中的具体步骤:读取操作:1. 应用程序注册读就需事件和相关联的事件处理器2. 事件分离器等待 ...
- 【云计算】Kubernetes、Marathon等框架需要解决什么样的问题?
闲谈Kubernetes 的主要特性和经验分享 Capitalonline全球云主机.全球私有网络,免费试用进行时 » 主要介绍 Kubernetes 的主要特性和一些经验.先从整体上 ...
- FireFox下上传控件的显示问题
Chrome正常 FireFox显示不正常 上传控件一直有个问题,就是样式问题,解决方法就是用一个大的背景层挡住,然后点大的背景层去触发上传控件的Click事件. Html: <span id= ...
- KDD-CUP Proposal
From 鞠源 已有 1303 次阅读 2012-11-25 21:09 |系统分类:科研笔记|关键词:会议 领域 justify 知识 KDDCUP - Competition is a stron ...