一道高精度DP

  题目大意,换工具,有m块钱,有k种价值的物品,(1...k),求一共有多少种换法

  这一题就是完全背包,现在这种完全背包对我来说就是水题了,

  状态转移方程闭着眼睛写dp[j]+=dp[j-i]

  可是这一题还没完,数据量太大,会出现溢出的情况,这一题有一点高精度的要求,要求也挺简单的,两个long long就可以了

  状态转移方程变为:

    dpl[j]+=dpl[j-i];

    dph[j]+=dph[j-i]+f(j)  当dpl[j]>Up时,f(j)=1,且dpl[j]=dp[j]-Up;

  而且更关键的是,这一题根本就是个错题,因为低位根本不需要加前导0就给过,加了就tle

  

 #include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define UP 1000000000000000000LL
#define CUT 18 static long long dpl[];
static long long dph[]; int main(void)
{
int sum, num, i, j;
long long k, tmp; while (~scanf("%d%d", &sum, &num))
{
dpl[] = ;
for (i = ; i <= num; i++)
{
for (j = i; j <= sum; j++)
{
dpl[j] = dpl[j] + dpl[j - i];
dph[j] = dph[j] + dph[j - i];
if (dpl[j] >= UP)
{
dph[j]++;
dpl[j] = dpl[j] - UP;
}
}
}
if (dph[sum] != )
printf("%lld", dph[sum]);
printf("%lld\n", dpl[sum]);
}
return ;
}

DP:Dollar Dayz(POJ 3181)的更多相关文章

  1. Dollar Dayz POJ - 3181

    解法 完全背包+大数...不想写大数了放个python得了 代码 dp=[0 for i in range(2000)] n,k=map(int,input().split()) num=[i for ...

  2. POJ 3181 Dollar Dayz(全然背包+简单高精度加法)

    POJ 3181 Dollar Dayz(全然背包+简单高精度加法) id=3181">http://poj.org/problem?id=3181 题意: 给你K种硬币,每种硬币各自 ...

  3. POJ 3181 Dollar Dayz && Uva 147 Dollars(完全背包)

    首先是 Uva 147:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_p ...

  4. poj 3181 Dollar Dayz(完全背包)

    Dollar Dayz Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5419   Accepted: 2054 Descr ...

  5. Dollar Dayz(大数母函数,高低位存取)

    Dollar Dayz Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5655   Accepted: 2125 Descr ...

  6. POJ 3181 Dollar Dayz DP

    f[i][j]=f[i-j][j]+f[i][j-1],结果很大需要高精度. //#pragma comment(linker, "/STACK:1024000000,1024000000& ...

  7. POJ 3181 Dollar Dayz 简单DP

    这DP虽然简单 但是思考一下还是挺好的 题意是 1,2,3,4....k 用加法凑成N 每个数可取不限个数 令dp[i][j] 表示前i种数凑成j的方案数 然后dp[i][j] = dp[i - 1] ...

  8. (完全背包 大数)Dollar Dayz (POJ 3181)

    http://poj.org/problem?id=3181 Description Farmer John goes to Dollar Days at The Cow Store and disc ...

  9. poj 3181 Dollar Dayz (整数划分问题---递归+DP)

    题目:http://poj.org/problem?id=3181 思路:将整数N划分为一系列正整数之和,最大不超过K.称为整数N的K划分. 递归:直接看代码: 动态规划:dp[i][j]:=将整数i ...

随机推荐

  1. Codeforces 650B Image Preview

    time limit per test 1 second memory limit per test 256 megabytes input standard input output standar ...

  2. UVa 12505 Searching in sqrt(n)

    传送门 一开始在vjudge上看到这题时,标的来源是CSU 1120,第八届湖南省赛D题“平方根大搜索”.今天交题时CSU突然跪了,后来查了一下看哪家OJ还挂了这道题,竟然发现这题是出自UVA的,而且 ...

  3. POJ1976A Mini Locomotive(01背包装+连续线段长度)

    A Mini Locomotive Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 2485   Accepted: 1388 ...

  4. 使用easyUI 创建复杂的toolbar到datagrid

    http://www.cnblogs.com/javaexam2/archive/2012/08/10/2632649.html @author YHC datagrid 的toolbar能包含的不仅 ...

  5. CentOS 6.3 NFS的安装配置、启动及mount挂载方法

    一.环境介绍: 服务器:centos 192.168.1.225 客户端:centos 192.168.1.226 二.安装: NFS的安装配置: centos 5 : yum -y install ...

  6. boost(barrier)

    barrier:栅栏的意思,当barrier bar(3),这三个线程会放到栅栏中,等第三个线程执行时一起唤醒,然后返回 barrier barrier类的接口定义如下: class barrier ...

  7. OOA/OOD/OOP(了解)

    Object-Oriented Analysis:面向对象分析方法 是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题.OOA与结构化分析有较大的区别.OOA所强调的是在系统 ...

  8. Java web小记

    1.Java Web设置页面刷新的方法(两种): response.setHeader("refresh", "0.3," + request.getHeade ...

  9. awk命令--update20150120

    简介 awk是一个强大的文本分析工具,把文件逐行读入,以空格为默认分隔符分割成field,切开的部分再进行各种分析处理. 模式和动作: 任何awk语句都是由模式和动作组成,模式部分决定动作语句何时触发 ...

  10. Python代码性能优化技巧

    摘要:代码优化能够让程序运行更快,可以提高程序的执行效率等,对于一名软件开发人员来说,如何优化代码,从哪里入手进行优化?这些都是他们十分关心的问题.本文着重讲了如何优化Python代码,看完一定会让你 ...