回归(regression)的理解(regressor,回归子)
1. 基本概念
回归(regression)是监督学习(given {(xi,yi)})的一个重要分类。回归用于预测输入变量(自变量,Xi)与输出变量(因变量,Yi) 之间的关系,特定是当输入变量的值发生变化时,输出变量的值随之发生的变化。
回归模型正是表示从输入变量(xi∈Rn)到输出变量(y∈R,也就是一个一维的数值,如果输出也是多维呢?至少不是一个分类任务了)之间映射的函数。回归问题的学习等价于函数拟合,选择一条函数曲线使其很好地拟合已知数据且很好地预测未知数据。
- 学习 ⇒ 学习系统(learning phase)⇒ 对象(输入)是训练数据
- 预测 ⇒ 预测系统(predicate phase)⇒ 对象(输入)是测试数据
回归问题分为学习和预测两个过程。首先给定一个训练数据集:
学习系统基于训练数据构建一个模型,即函数 Y=f(X);对新的输入 xN+1,预测系统根据学习到的模型 Y=f(X),确定相应的输出(预测输出)yN+1。
- 回归问题按照输入变量的个数,分为一元回归和多元回归;
- 按照输入变量和输出变量之间关系(即模型的类型),分为线性模型和非线性模型;
二者一组合,就得出四种回归的分类了:一元线性,一元非线性,多元线性,多元非线性。
回归学习最常用到的损失函数是平方损失函数,在此问题下,回归问题可以由著名的最小二乘法(least squares)求解。
比如注明的线性回归问题:
2. regressor 等概念的认识
Linear Regression with One Regressor
考虑如下的线性方程,
- β0 是(直线的)截距;
- β1 是斜率;
该线性方程,是一个具有单回归子(regressor)的回归模型,
- Y 是因变量,
- X 是独立变量(自变量)或者叫回归子(regressor)
β0+β1Xi 表示着总体回归函数,
- β0,β1 是参数(parameters)或者系数(coefficients)
ui 则是误差项(error term)
3. exponential regression model
What does a “closed-form solution” mean?
考虑如下的简单指数型回归模型,其唯一的 regressor 就是截距:
目标函数为:
求和号展开,并对 α 求导,置 0,最终得,α⋆=lny¯
回归(regression)的理解(regressor,回归子)的更多相关文章
- 浅谈回归Regression(一)
一.什么是回归? 孩子的身高是否与父母有关? 实际上,父母和孩子的身高是受到回归效应影响的.在时间纵轴上受影响.具有随机性的事物,无不遵循这一规律. 只要数据足够大,人类的身高或者智商,都有趋于平均值 ...
- 机器学习中的数学(1)-回归(regression)、梯度下降(gradient descent)
版权声明: 本文由LeftNotEasy所有,发布于http://leftnoteasy.cnblogs.com.如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任. 前言: ...
- 回归(regression)、梯度下降(gradient descent)
本文由LeftNotEasy所有,发布于http://leftnoteasy.cnblogs.com.如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任. 前言: 上次写过一篇 ...
- scikit-learn中的岭回归(Ridge Regression)与Lasso回归
一.岭回归模型 岭回归其实就是在普通最小二乘法回归(ordinary least squares regression)的基础上,加入了正则化参数λ. 二.如何调用 class sklearn.lin ...
- Keras(三)backend 兼容 Regressor 回归 Classifier 分类 原理及实例
backend 兼容 backend,即基于什么来做运算 Keras 可以基于两个Backend,一个是 Theano,一个是 Tensorflow 查看当前backend import keras ...
- 从广义线性模型(GLM)理解逻辑回归
1 问题来源 记得一开始学逻辑回归时候也不知道当时怎么想得,很自然就接受了逻辑回归的决策函数--sigmod函数: 与此同时,有些书上直接给出了该函数与将 $y$ 视为类后验概率估计 $p(y=1|x ...
- Spark MLlib回归算法------线性回归、逻辑回归、SVM和ALS
Spark MLlib回归算法------线性回归.逻辑回归.SVM和ALS 1.线性回归: (1)模型的建立: 回归正则化方法(Lasso,Ridge和ElasticNet)在高维和数据集变量之间多 ...
- 机器学习之LinearRegression与Logistic Regression逻辑斯蒂回归(三)
一 评价尺度 sklearn包含四种评价尺度 1 均方差(mean-squared-error) 2 平均绝对值误差(mean_absolute_error) 3 可释方差得分(explained_v ...
- 利用Caffe做回归(regression)
Caffe应该是目前深度学习领域应用最广泛的几大框架之一了,尤其是视觉领域.绝大多数用Caffe的人,应该用的都是基于分类的网络,但有的时候也许会有基于回归的视觉应用的需要,查了一下Caffe官网,还 ...
- 线性回归 Linear regression(4) 局部加权回归
这篇文章将介绍过拟合和欠拟合的概念,并且介绍局部加权回归算法. 过拟合和欠拟合 之前在线性回归中,我们总是将单独的x作为我们的特征,但其实我们可以考虑将,甚至x的更高次作为我们的特征,那么我们通过线性 ...
随机推荐
- java学习笔记之基础语法(一)
1.java语言基础由关键字.标识符.注释.常量和变量.运算符.语句.函数和数组等组成. 2.1关键字 定义:被java语言赋予了特殊含义的单词 特点:关键字中所有的字母都是小写. 2.2用于定义数据 ...
- Spring Boot 2.x 使用 jpa 连接 mysql
在spring boot网站上生成一个项目,如图: 我使用的是Maven项目,java使用是jdk8(spring boot 2.x必须要jdk8及以上),dependencies分别输入选择 web ...
- OC学习篇之---文件的操作
今天我们来介绍OC中文件操作,在之前的文章中,已经接触到了文件的创建了,但是那不是很具体和详细,这篇文章我们就来仔细看一下OC中是如何操作文件的: 第一.首先来看一下本身NSString类给我们提供了 ...
- swift项目第八天:自定义转场动画以及设置titleView的状态
如图效果: 一:Home控制器 /* 总结:1:设置登陆状态下的导航栏的左右按钮:1:在viewDidLoad里用三目运算根据从父类继承的islogin的登陆标识来判断用户是否登陆来显示不同的界面.未 ...
- Java反射学习总结终(使用反射和注解模拟JUnit单元测试框架)
转载请注明本文出自大苞米的博客(http://blog.csdn.net/a396901990),谢谢支持! 本文是Java反射学习总结系列的最后一篇了,这里贴出之前文章的链接,有兴趣的可以打开看看. ...
- 算法 Tricks(六)— if 条件分支的简化
考虑下面的三分支的定义式: f=⎧⎩⎨⎪⎪a,b,a+b,x>yx<yx=y int f = 0; if (x >= y) f += a; if (x <= y) f += b ...
- ORACEL上传BLOB,深度遍历文件夹
// uploadingDlg.cpp : 实现文件// #include "stdafx.h"#include "uploading.h"#include & ...
- swift学习第九天:可选类型以及应用场景
可选类型的介绍 注意: 可选类型时swift中较理解的一个知识点 暂时先了解,多利用Xcode的提示来使用 随着学习的深入,慢慢理解其中的原理和好处 概念: 在OC开发中,如果一个变量暂停不使用,可以 ...
- jquery如何实现动态增加选择框
jquery如何实现动态增加选择框 一.总结 一句话总结:用jquery的clone(true)方法. 1.如何在页面中复制amazeui加了特效的标签? amazeui中的控件带js方法,不知道那部 ...
- 【u122】迎接仪式
Time Limit: 1 second Memory Limit: 128 MB [问题描述] LHX教主要来X市指导OI学习工作了.为了迎接教主,在一条道路旁,一群Orz教主er穿着文化衫站在道路 ...