题目大意:求满足gcd(a,b,c)==1,1/a+1/b=1/c,a,b,c<=n的{a,b,c}有序三元组个数

因为题目里有LJJ我才做的这道题

出题人官方题解https://www.cnblogs.com/Blog-of-Eden/p/9367521.html对我帮助很大

思维很巧妙的一道题,佩服出题人Orzzz

由原式可得,$c=\frac{ab}{a+b}$

令g=gcd(a,b),A=a/g,B=b/g,显然gcd(g,c)==1,gcd(A,B)==1

带入可得$\frac{ABg^{2}}{(A+B)g}=c$ <=> $\frac{ABg}{A+B}=c$

因为A,B互质,所以$A,B,A+B$两两互质

由$\frac{ABg}{A+B}=c$可得

因为c是整数,A与A+B互质,B与$A+B互质,所以当且仅当(A+B)|g

令G=g/(A+B),可得ABG=c,所以G|c,而g与c互质,所以G作为g的因子,与c也一定互质,即gcd(G,c)==1,所以G只能等于1

综上,可得g=A+B,c=AB,a+b=$g^{2}$

现在大问题转化成了一般性问题,每次枚举一个g,求在一定范围内,g=A+B且gcd(A,B)==1的数对数量

显然这样的数对数量可以用莫比乌斯反演求得

由于g<=$\sqrt(2n)$,g<$2*10^{6}$,通过预处理,分解质因数是时间可以优化成logn,再筛出它所有的因子,利用莫比乌斯函数的容斥性质,即可求得合法数对数量

筛出每个数的因子的时间是均摊logn(调和级数),但由于空间限制,不能预处理出每个数的所有因子..

而A的合法范围则是保证A<=g,A*g<=n&&B*g<=n

细节需要多思考

 #include <cmath>
#include <vector>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 2001000
#define maxn 2000000
#define ll long long
#define uint unsigned int
using namespace std; ll n;
int cnt; int pr[N],use[N],mu[N],pmu[N],nxt[N];
void get_pr()
{
mu[]=pmu[]=;
for(int i=;i<=maxn;i++)
{
if(!use[i]) pr[++cnt]=i,nxt[i]=i,mu[i]=-;
pmu[i]=pmu[i-]+mu[i];
for(int j=;j<=cnt&&i*pr[j]<=maxn;j++){
use[i*pr[j]]=,nxt[i*pr[j]]=pr[j];
if(i%pr[j]==){
mu[i*pr[j]]=;
break;
}else{
mu[i*pr[j]]=-mu[i];
}
}
}
}
int son[N],d[N],ps[N],num,nson;
void dfs_son(int s,int dep)
{
if(dep>num) {son[++nson]=s;return;}
for(int j=;j<=d[dep];j++)
dfs_son(s,dep+),s*=ps[dep];
}
void get_son(int x)
{
num=;
while(x!=){
int p=nxt[x];ps[++num]=p;d[num]=;
while(x%p==) x/=p,d[num]++;
}
if(x!=) ps[++num]=x,d[num]=;
for(int i=;i<=nson;i++) son[i]=;
nson=;
dfs_son(,);
}
ll solve(int l,int r,int g)
{
ll ans=;l--;
get_son(g);
for(int i=;i<=nson;i++)
ans+=1ll*mu[son[i]]*(r/son[i]-l/son[i]);
return ans;
} int main()
{
//freopen("t1.in","r",stdin);
scanf("%lld",&n);
ll sq=sqrt(n*);
get_pr();
ll ans=;
for(ll g=;g<=sq;g++)
{
int l=max(1ll,((g*g-n)/g+( ((g*g-n)%g==)?: )));
int r=min(g-,n/g);
if(l>r) continue;
ans+=solve(l,r,g);
}
printf("%lld\n",ans);
return ;
}

luogu 4844 LJJ爱数数 (莫比乌斯反演+数学推导)的更多相关文章

  1. Luogu 4844 LJJ爱数数

    LOJ 6482 设$d = gcd(a, b)$,$xd = a$,$yd = b$,因为$\frac{1}{a} + \frac{1}{b} = \frac{a + b}{ab} = \frac{ ...

  2. 【BZOJ3930】选数(莫比乌斯反演,杜教筛)

    [BZOJ3930]选数(莫比乌斯反演,杜教筛) 题面 给定\(n,K,L,R\) 问从\(L-R\)中选出\(n\)个数,使得他们\(gcd=K\)的方案数 题解 这样想,既然\(gcd=K\),首 ...

  3. 关于不同进制数之间转换的数学推导【Written By KillerLegend】

    关于不同进制数之间转换的数学推导 涉及范围:正整数范围内二进制(Binary),八进制(Octonary),十进制(Decimal),十六进制(hexadecimal)之间的转换 数的进制有多种,比如 ...

  4. BZOJ 5330 Luogu P4607 [SDOI2018]反回文串 (莫比乌斯反演、Pollard Rho算法)

    题目链接 (BZOJ) https://www.lydsy.com/JudgeOnline/problem.php?id=5330 (Luogu) https://www.luogu.org/prob ...

  5. 【Luogu】P2303Longge的问题(莫比乌斯反演)

    就让我这样的蒟蒻发一个简单易想的题解吧!!! 这题我一开始一看,woc这不是莫比乌斯反演么,推推推,推到杜教筛,输出结果一看不对 emmm回来仔细想想……woc推错了? 然后撕烤半天打了个暴力,A了 ...

  6. [CQOI2015]选数(莫比乌斯反演,杜教筛)

    [CQOI2015]选数(luogu) Description 题目描述 我们知道,从区间 [L,H](L 和 H 为整数)中选取 N 个整数,总共有 (H-L+1)^N 种方案. 小 z 很好奇这样 ...

  7. BZOJ3930 [CQOI2015]选数【莫比乌斯反演】

    Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...

  8. P3172 [CQOI2015]选数(莫比乌斯反演)

    [题目链接] https://www.luogu.org/problemnew/show/P3172 [题解] https://www.luogu.org/blog/user29936/solutio ...

  9. [BZOJ2045]双亲数(莫比乌斯反演)

    双亲数 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 959  Solved: 455[Submit][Status][Discuss] Descri ...

随机推荐

  1. mysql对事务的支持

    起因:因为只是需要编写一个接口,无需使用框架,但是又要求对数据库的操作支持事务,所以直接使用mysql自带的事务进行处理 mysql自带对事务的支持,但是他默认是关闭的,需要我们手动打开,打开mysq ...

  2. [国家集训队2009]小Z的袜子

    题目:洛谷P1494.BZOJ2038. 题目大意:给你一列袜子的颜色,每次要你求从区间$[L,R]$内随机选两个袜子颜色相同的概率.解题思路:首先,对于某个特定区间$[L,R]$,它的概率是$\fr ...

  3. js 如何判断浏览器是否禁用cookie

    语法:navigator.cookieEnabled: 如果浏览器启用了cookie,该属性值为true.如果禁用了cookie,则值为false. navigator: JavaScript中的一个 ...

  4. [WPF,XAML] 跳动的心

    原文:[WPF,XAML] 跳动的心 没什么艺术细胞,原谅,原谅! <Canvas Width="0" Height="0"> <Canvas ...

  5. vue解决跨域问题

    vue解决跨域问题 vue跨域解决方法和小总结 vue项目中,前端与后台进行数据请求或者提交的时候,如果后台没有设置跨域,前端本地调试代码的时候就会报“No 'Access-Control-Allow ...

  6. 8个超实用的Java测试工具和框架

    Java入门 如果你才刚开始接触Java世界,那么要做的第一件事情是,安装JDK——Java Development Kit(Java开发工具包),它自带有Java Runtime Environme ...

  7. MySQL5.7 的 错误堆栈缓冲

    什么是错误缓冲堆栈呢? 举个非常简单的样例,比方运行以下一条语句:mysql> INSERT INTO t_datetime VALUES(2,'4','5');ERROR 1292 (2200 ...

  8. Struts2中的异步提交(ajaxfileupload异步上传(图片)插件的使用)

    server端採用struts2来处理文件上传. 所需环境: jquery.js ajaxfileupload.js struts2所依赖的jar包 及struts2-json-plugin-2.1. ...

  9. USACO 5.1.1凸包

    转自:http://blog.csdn.net/cnyali/article/details/50097593 程序: #include <iostream> #include <a ...

  10. Cocos2d-x 常见宏

    1)NS_CC_BEGIN cocos2d命名空间開始 2) NS_CC_END  cocos2d命名空间结束 3)USING_NS_CC 声明cocos2d命名空间 4)CC_SYNTHESIZE_ ...