题目链接:

https://projecteuler.net/problem=501

题意:

\(f(n)\) be the count of numbers not exceeding \(n\) with exactly eight divisors.

就是找少于等于 \(n\)中只有8个因子的个数。

You are given \(f(100) = 10, f(1000) = 180\) and \(f(10^6) = 224427\).

Find \(f(10^{12})\)

题解:

我们知道,对于 \(n=\prod p_i^{a_i}\) ,那么,\(n\)的因子的个数有 \(\prod (a_i+1)\)个。

那么,符合题目条件的只有三种情况。

\(1.p^{7} <= n\)

\(2.p^{3} * q <= n\)

\(3.p * q * r <= n\)'

其中,\(p,q,r\)是各自不相等的质数,并且 \(p < q < r\)。

和这题套路一样。

http://codeforces.com/problemset/problem/665/F

Codefores这题代码:

#include <bits/stdc++.h>
using namespace std; const int MAX = 2e6+5;
const int M = 7;
typedef long long ll;
vector<int> lp, primes, pi;
int phi[MAX+1][M+1], sz[M+1]; void factor_sieve()
{
lp.resize(MAX);
pi.resize(MAX);
lp[1] = 1;
pi[0] = pi[1] = 0;
for (int i = 2; i < MAX; i++) {
if (lp[i] == 0) {
lp[i] = i;
primes.emplace_back(i);
}
for (int j = 0; j < primes.size() && primes[j] <= lp[i]; j++) {
int x = i * primes[j];
if (x >= MAX) break;
lp[x] = primes[j];
}
pi[i] = primes.size();
}
} void init()
{
factor_sieve();
for(int i = 0; i <= MAX; i++) {
phi[i][0] = i;
}
sz[0] = 1;
for(int i = 1; i <= M; i++) {
sz[i] = primes[i-1]*sz[i-1];
for(int j = 1; j <= MAX; j++) {
phi[j][i] = phi[j][i-1] - phi[j/primes[i-1]][i-1];
}
}
} int sqrt2(long long x)
{
long long r = sqrt(x - 0.1);
while (r*r <= x) ++r;
return r - 1;
} int cbrt3(long long x)
{ long long r = cbrt(x - 0.1);
while(r*r*r <= x) ++r;
return r - 1;
} long long getphi(long long x, int s)
{
if(s == 0) return x;
if(s <= M)
{
return phi[x%sz[s]][s] + (x/sz[s])*phi[sz[s]][s];
}
if(x <= primes[s-1]*primes[s-1])
{
return pi[x] - s + 1;
}
if(x <= primes[s-1]*primes[s-1]*primes[s-1] && x < MAX)
{
int sx = pi[sqrt2(x)];
long long ans = pi[x] - (sx+s-2)*(sx-s+1)/2;
for(int i = s+1; i <= sx; ++i) {
ans += pi[x/primes[i-1]];
}
return ans;
}
return getphi(x, s-1) - getphi(x/primes[s-1], s-1);
} long long getpi(long long x)
{
if(x < MAX) return pi[x];
int cx = cbrt3(x), sx = sqrt2(x);
long long ans = getphi(x, pi[cx]) + pi[cx] - 1;
for(int i = pi[cx]+1, ed = pi[sx]; i <= ed; i++)
{
ans -= getpi(x/primes[i-1-1]) - i + 1;
}
return ans;
} long long lehmer_pi(long long x)
{
if(x < MAX) return pi[x];
int a = (int)lehmer_pi(sqrt2(sqrt2(x)));
int b = (int)lehmer_pi(sqrt2(x));
int c = (int)lehmer_pi(cbrt3(x));
long long sum = getphi(x, a) + (long long)(b + a - 2) * (b - a + 1) / 2;
for (int i = a + 1; i <= b; i++)
{
long long w = x / primes[i-1];
sum -= lehmer_pi(w);
if (i > c) continue;
long long lim = lehmer_pi(sqrt2(w));
for (int j = i; j <= lim; j++)
{
sum -= lehmer_pi(w / primes[j-1]) - (j - 1);
}
}
return sum;
} long long power(long long a, long long b)
{
long long x = 1, y = a;
while(b)
{
if (b&1) x = x * y;
y = y * y;
b >>= 1;
}
return x;
}
void solve(long long n)
{
ll ans = 0;
// case 1: p^3 <= n ,p is a prime
for(int i = 0; i < (int)primes.size(); i++) {
if (power(primes[i], 3) <= n) {
//std::cout << primes[i] << '\n';
ans += 1;
}
else {
break;
}
}
// std::cout << "ans=" <<ans << '\n'<<'\n';
// case 2: p*q <= n (p < q)
// p, q is distinct primes
ll cnt = 0;
ll q = 0;
for(int i = 0; i < (int)primes.size(); i++) //p
{
ll x = (ll)primes[i]; // p
q = n / x; //q
if(q <= x)continue;
if(q == 0)continue;
//std::cout << "p=" << x << '\n';
//std::cout << "q=" << q << '\n';
cnt = lehmer_pi(q);
if (q >= primes[i]) {
cnt -= lehmer_pi(x);
}
if (cnt <= 0) break;
//std::cout << "cnt=" <<cnt << '\n';
ans += cnt;
}
// std::cout << "p*q finish!" << '\n'; std::cout << ans << '\n';
}
int main(int argc, char const *argv[])
{
ll n;
init();
scanf("%lld", &n);
solve(n);
return 0;
}

PE501代码:

利用 Lucy_Hedgehog's method. \(O(n^{3/4})\)。跑10min左右...太慢了..

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 2000010;
vector<int> mark,prime;
void init()
{
mark.resize(maxn);
mark[1] = 1;
for (int i = 2; i < maxn; i++)
{
if (mark[i] == 0)
{
mark[i] = i;
prime.emplace_back(i);
}
for (int j = 0; j < (int)prime.size() && prime[j] <= mark[i]; j++)
{
int x = i * prime[j];
if (x >= maxn) break;
mark[x] = prime[j];
}
}
}
ll check(ll v, ll n, ll ndr, ll nv) {
return v >= ndr ? (n / v - 1) : (nv - v);
}
ll primenum(ll n) // O(n^(3/4))
{
assert(n>=1);
ll r = (ll)sqrt(n);
ll ndr = n / r;
assert(r*r <= n && (r+1)*(r+1) > n);
ll nv = r + ndr - 1;
std::vector<ll> S(nv+1);
std::vector<ll> V(nv+1);
for(ll i=0;i<r;i++) {
V[i] = n / (i+1);
}
for(ll i=r;i<nv;i++) {
V[i] = V[i-1] - 1;
}
for(ll i = 0;i<nv;i++) {
S[i] = V[i] - 1; //primes number
}
for(ll p=2;p<=r;p++) {
if(S[nv-p] > S[nv-p+1]) {
ll sp = S[nv-p+1]; // sum of primes smaller than p
ll p2 = p*p;
// std::cout << "p=" << p << '\n'; // p is prime
for(ll i=0;i<nv;i++) {
if(V[i] >= p2) {
S[i] -= 1LL * (S[check(V[i] / p, n, ndr, nv)] - sp);
}
else break;
}
}
}
ll ans = S[0];
return ans;
} ll qpower(ll a, ll b)
{
ll res = 1;
while(b)
{
if (b&1) res = res * a;
a = a * a;
b >>= 1;
}
return res;
} void solve(ll n)
{ ll ans = 0;
// case 1: p^7 <= n ,p is a prime
for(int i = 0; i < (int)prime.size(); i++) {
// for example 2^7 = 128 <=n
if (qpower(prime[i], 7) <= n) {
//std::cout << primes[i] << '\n';
ans += 1;
}
else {
break;
}
}
std::cout << "p^7 finish!" << '\n'; // case 2: p^3*q <= n (p < q)
// p, q is distinct primes
ll cnt = 0;
for(int i = 0; i < (int)prime.size(); i++) //p
{
ll x = (ll)prime[i]*prime[i]*prime[i]; // p^3
x = n / x; //q
if(x == 0)continue;
cnt = primenum(x);
if (x >= prime[i]) {
cnt -= 1;
}
if (cnt <= 0) break;
ans += cnt;
}
std::cout << "p^3*q finish!" << '\n'; //case 3: p*q*r <= n (p < q < r)
// p,q,r is distinct primes
for(int i = 0; i < (int)prime.size(); i++) // p
{
if (qpower(prime[i], 3) > n) {
break;
}
for(int j = i+1; j < (int)prime.size(); j++) // q
{
ll x = n / ((ll)prime[i]*prime[j]);
if(x <= j)continue;
if(x == 0)continue;
cnt = primenum(x); // r
cnt -= j+1;
if (cnt <= 0) break;
ans += cnt;
}
}
std::cout << "p*q*r finish!" << '\n';
std::cout << ans << '\n';
cerr << "Time elapsed: " << 1.0 * clock() / CLOCKS_PER_SEC << " s.\n";
}
int main(int argc, char const *argv[])
{
/* code */
init();
solve(100);
solve(1000);
solve(1000000);
solve(1e12);
return 0;
}

利用Meisell-Lehmer's method。\(O(n^{2/3})\)。跑10s..

#include <bits/stdc++.h>
using namespace std; const int MAX = 2e6+5;
const int M = 7; vector<int> lp, primes, pi;
int phi[MAX+1][M+1], sz[M+1]; void factor_sieve()
{
lp.resize(MAX);
pi.resize(MAX);
lp[1] = 1;
pi[0] = pi[1] = 0;
for (int i = 2; i < MAX; i++) {
if (lp[i] == 0) {
lp[i] = i;
primes.emplace_back(i);
}
for (int j = 0; j < primes.size() && primes[j] <= lp[i]; j++) {
int x = i * primes[j];
if (x >= MAX) break;
lp[x] = primes[j];
}
pi[i] = primes.size();
}
} void init()
{
factor_sieve();
for(int i = 0; i <= MAX; i++) {
phi[i][0] = i;
}
sz[0] = 1;
for(int i = 1; i <= M; i++) {
sz[i] = primes[i-1]*sz[i-1];
for(int j = 1; j <= MAX; j++) {
phi[j][i] = phi[j][i-1] - phi[j/primes[i-1]][i-1];
}
}
} int sqrt2(long long x)
{
long long r = sqrt(x - 0.1);
while (r*r <= x) ++r;
return r - 1;
} int cbrt3(long long x)
{ long long r = cbrt(x - 0.1);
while(r*r*r <= x) ++r;
return r - 1;
} long long getphi(long long x, int s)
{
if(s == 0) return x;
if(s <= M)
{
return phi[x%sz[s]][s] + (x/sz[s])*phi[sz[s]][s];
}
if(x <= primes[s-1]*primes[s-1])
{
return pi[x] - s + 1;
}
if(x <= primes[s-1]*primes[s-1]*primes[s-1] && x < MAX)
{
int sx = pi[sqrt2(x)];
long long ans = pi[x] - (sx+s-2)*(sx-s+1)/2;
for(int i = s+1; i <= sx; ++i) {
ans += pi[x/primes[i-1]];
}
return ans;
}
return getphi(x, s-1) - getphi(x/primes[s-1], s-1);
} long long getpi(long long x)
{
if(x < MAX) return pi[x];
int cx = cbrt3(x), sx = sqrt2(x);
long long ans = getphi(x, pi[cx]) + pi[cx] - 1;
for(int i = pi[cx]+1, ed = pi[sx]; i <= ed; i++)
{
ans -= getpi(x/primes[i-1-1]) - i + 1;
}
return ans;
} long long lehmer_pi(long long x)
{
if(x < MAX) return pi[x];
int a = (int)lehmer_pi(sqrt2(sqrt2(x)));
int b = (int)lehmer_pi(sqrt2(x));
int c = (int)lehmer_pi(cbrt3(x));
long long sum = getphi(x, a) + (long long)(b + a - 2) * (b - a + 1) / 2;
for (int i = a + 1; i <= b; i++)
{
long long w = x / primes[i-1];
sum -= lehmer_pi(w);
if (i > c) continue;
long long lim = lehmer_pi(sqrt2(w));
for (int j = i; j <= lim; j++)
{
sum -= lehmer_pi(w / primes[j-1]) - (j - 1);
}
}
return sum;
} long long power(long long a, long long b)
{
long long x = 1, y = a;
while(b)
{
if (b&1) x = x * y;
y = y * y;
b >>= 1;
}
return x;
}
void solve(long long n)
{
init();
long long ans = 0, val = 0; // case : p^7 <= n ,p is a prime
for(int i = 0; i < primes.size(); i++) {
// for example 2^7 = 128 <=n
if (power(primes[i], 7) <= n) {
//std::cout << primes[i] << '\n';
ans += 1;
}
else {
break;
}
}
// std::cout << "ans = " << ans << '\n'; // case : p^3*q <= n (assume q > p for finding unique pairs)
// p, q is distinct primes
for(int i = 0; i < primes.size(); i++) //p
{
long long x = (long long)primes[i]*primes[i]*primes[i]; // p^3
x = n / x; //q
val = lehmer_pi(x);
if (x >= primes[i]) {
val -= 1;
}
if (val <= 0) break;
ans += val;
}
//case : p*q*r <= n (assume r > q > p for finding unique pairs)
// p,q,r is distinct primes
for(int i = 0; i < primes.size(); i++) // p
{
if (power(primes[i], 3) > n) {
break;
}
for(int j = i+1; j < primes.size(); j++) // q
{
long long x = n / ((long long)primes[i]*primes[j]);
if(x < j)continue;
val = lehmer_pi(x); // r
val -= j+1; // 减去 计算 <=x 的素数个数中多余的
if (val <= 0) break;
ans += val;
}
}
std::cout << ans << '\n';
cerr << "Time elapsed: " << 1.0 * clock() / CLOCKS_PER_SEC << " s.\n";
}
int main(int argc, char const *argv[])
{
/* code */
solve(1e12);
return 0;
}

Project Euler 501 Eight Divisors (数论)的更多相关文章

  1. Project Euler 516 5-smooth totients (数论)

    题目链接: https://projecteuler.net/problem=516 题目: \(5\)-smooth numbers are numbers whose largest prime ...

  2. Python练习题 048:Project Euler 021:10000以内所有亲和数之和

    本题来自 Project Euler 第21题:https://projecteuler.net/problem=21 ''' Project Euler: Problem 21: Amicable ...

  3. Python练习题 040:Project Euler 012:有超过500个因子的三角形数

    本题来自 Project Euler 第12题:https://projecteuler.net/problem=12 # Project Euler: Problem 12: Highly divi ...

  4. [project euler] program 4

    上一次接触 project euler 还是2011年的事情,做了前三道题,后来被第四题卡住了,前面几题的代码也没有保留下来. 今天试着暴力破解了一下,代码如下: (我大概是第 172,719 个解出 ...

  5. Python练习题 029:Project Euler 001:3和5的倍数

    开始做 Project Euler 的练习题.网站上总共有565题,真是个大题库啊! # Project Euler, Problem 1: Multiples of 3 and 5 # If we ...

  6. Project Euler 9

    题意:三个正整数a + b + c = 1000,a*a + b*b = c*c.求a*b*c. 解法:可以暴力枚举,但是也有数学方法. 首先,a,b,c中肯定有至少一个为偶数,否则和不可能为以上两个 ...

  7. Project Euler 44: Find the smallest pair of pentagonal numbers whose sum and difference is pentagonal.

    In Problem 42 we dealt with triangular problems, in Problem 44 of Project Euler we deal with pentago ...

  8. project euler 169

    project euler 169 题目链接:https://projecteuler.net/problem=169 参考题解:http://tieba.baidu.com/p/2738022069 ...

  9. 【Project Euler 8】Largest product in a series

    题目要求是: The four adjacent digits in the 1000-digit number that have the greatest product are 9 × 9 × ...

随机推荐

  1. 作为刚開始学习的人应该怎样来学习FPGA

    FPGA作为一种高新的技术.已经逐渐普及到了各行各业.不管是消费类.通信类.电子行业都无处不在它的身影,从1985年第一颗FPGA诞生至 今,FPGA已经历了将近20多个年头,从当初的几百个门电路到如 ...

  2. 66.app.use(express.static)

    转自:https://blog.csdn.net/u010977147/article/details/60956502

  3. 1.实用:Google Chrome 键盘快捷键大全

    转自:https://www.cnbeta.com/articles/soft/64070.htm 窗口和标签页快捷方式 Ctrl+N 打开新窗口 按住 Ctrl‎ 键,然后点击链接 在新标签页中打开 ...

  4. 企业实战之部署Solarwinds Network八部众

    企业实战之部署Solarwinds Network 网管系统八部众 Orion Network Performance Monitor是全面的带宽性能监控和故障管理软件,能监控并收集来自路由器.交换机 ...

  5. private SortedDictionary<string, object> Dic_values = new SortedDictionary<string, object>();

    private SortedDictionary<string, object> Dic_values = new SortedDictionary<string, object&g ...

  6. javafx DropShadow

    public class EffectTest extends Application { DropShadow shadow = new DropShadow(); public static vo ...

  7. 实现CSS样式垂直水平完全居中

    1.水平居中 a.内联元素(inline or inline-*)居中? 你可以让他相对父级块级元素居中对齐 .center-children { text-align: center; } b.块级 ...

  8. Vue自定义指令实现下拉加载:v-loadmore

    和methods平级: directives: { loadmore: {//自定义指令: 下拉加载 bind(el, binding) {    var p = 0;    var t = 0;  ...

  9. [React] Create a queue of Ajax requests with redux-observable and group the results.

    With redux-observable, we have the power of RxJS at our disposal - this means tasks that would other ...

  10. js35

    <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/stri ...