给你两个数n和m,然后让你求组合数C(n,m)中的质因子的个数。

  这里用到的一个定理:判断阶乘n!中的质因子 i 的个数的方法---f(n!)=n/i+n/i^2+n/i^3+.....n/i^m (i为一个质因子,m是使n/i^m=0的最小值);

  又已知C(n,m)=n!/ ( m!·(n-m)! ) ; 所以需要n!中所有的质因子的个数,然后再减去m! 和 (n-m)! 这些质因子的个数,得到的结果就是该组合数质因子的个数。

  

 #include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <cctype>
#include <queue>
#include <stack>
#include <map>
#include <vector>
#include <set>
#include <utility>
#define ll long long
#define inf 0x3f3f3f3f
using namespace std; const int N=1e6+;
bool book[N];
vector<int> prime;
void get_prime() //筛法预处理素数表
{
fill(book,book+N,false);
for(int i=;i<N;i++)
{
if(!book[i])
{
prime.push_back(i);
for(int j=i+i;j<N;j+=i)
book[j]=true;
}
}
}
int main()
{
//freopen("input.txt","r",stdin);
get_prime();
int n,m;
while(scanf("%d%d",&n,&m)&&n&&m)
{
int res=;
int len=prime.size();
for(int i=;i<len&&prime[i]<=n;i++)
{ //分别计算n!、m!、(n-m)! 中含有质因子prime[i]的个数,再把n!的个数减去m!和(n-m)!的个数
int tn=n,tm=m,tt=n-m,cnt=;
while(tn)
{
cnt+=tn/prime[i];
tn/=prime[i];
}
while(tm)
{
cnt-=tm/prime[i];
tm/=prime[i];
}
while(tt)
{
cnt-=tt/prime[i];
tt/=prime[i];
}
if(cnt) res++;
}
printf("%d\n",res);
}
return ;
}

FZU 1851 组合数的更多相关文章

  1. 【Lucas组合数定理】组合-FZU 2020

    组合 FZU-2020 题目描述 给出组合数C(n,m), 表示从n个元素中选出m个元素的方案数.例如C(5,2) = 10, C(4,2) = 6.可是当n,m比较大的时候,C(n,m)很大!于是x ...

  2. 【转载】【转自AekdyCoin的组合数取模】

    本篇文章主要介绍了"[组合数求模] 转自AekdyCoin",主要涉及到[组合数求模] 转自AekdyCoin方面的内容,对于[组合数求模] 转自AekdyCoin感兴趣的同学可以 ...

  3. 【转】AC神组合数取模大全

    貌似少了几张图片,不过没有图片也没什么关系的感觉. 最后的究极篇也想出来了,但是貌似找不到题目,好尴尬.. 这个表示的是从n个元素中选取m个元素的方案数. (PS.组合数求模似乎只用在信息学竞赛和 A ...

  4. 组合数们&&错排&&容斥原理

    最近做了不少的组合数的题这里简单总结一下下 1.n,m很大p很小 且p为素数p要1e7以下的 可以接受On的时间和空间然后预处理阶乘 Lucas定理来做以下是代码 /*Hdu3037 Saving B ...

  5. LCM性质 + 组合数 - HDU 5407 CRB and Candies

    CRB and Candies Problem's Link Mean: 给定一个数n,求LCM(C(n,0),C(n,1),C(n,2)...C(n,n))的值,(n<=1e6). analy ...

  6. FZU 2137 奇异字符串 后缀树组+RMQ

    题目连接:http://acm.fzu.edu.cn/problem.php?pid=2137 题解: 枚举x位置,向左右延伸计算答案 如何计算答案:对字符串建立SA,那么对于想双延伸的长度L,假如有 ...

  7. FZU 1914 单调队列

    题目链接:http://acm.fzu.edu.cn/problem.php?pid=1914 题意: 给出一个数列,如果它的前i(1<=i<=n)项和都是正的,那么这个数列是正的,问这个 ...

  8. ACM: FZU 2105 Digits Count - 位运算的线段树【黑科技福利】

     FZU 2105  Digits Count Time Limit:10000MS     Memory Limit:262144KB     64bit IO Format:%I64d & ...

  9. FZU 2112 并查集、欧拉通路

    原题:http://acm.fzu.edu.cn/problem.php?pid=2112 首先是,票上没有提到的点是不需要去的. 然后我们先考虑这个图有几个连通分量,我们可以用一个并查集来维护,假设 ...

随机推荐

  1. 动态title

    <html><head><meta charset="uft8"><title>测试title</title></ ...

  2. Python 36 GIL全局解释器锁 、vs自定义互斥锁

    一:GIL全局解释器锁介绍 在CPython中,全局解释器锁(或GIL)是一个互斥锁, 它阻止多个本机线程同时执行Python字节码.译文:之所以需要这个锁, 主要是因为CPython的内存管理不是线 ...

  3. Python 32 通信循环 连接循环 粘包问题

    一:通信循环 二:连接循环 三:粘包问题

  4. BZOJ 4562 搜索...

    思路: 统计入度&出度 每搜到一个点 in[v[i]]--,f[v[i]]+=f[t]; if(!in[v[i]])if(out[v[i]])q.push(v[i]);else ans+=f[ ...

  5. BZOJ 2333 左偏树 (写得我人生都崩溃了...)

    思路: 高一神犇 竟然 问我这道题   我光荣地  看着题解(划掉)  写了一下午 QaQ multiset不能erase(一个值)   这样就把等于这个值 的数都erase掉了  (woc我一开始不 ...

  6. supervisord 使用记录

    #supervisor简介 Supervisor是一个 Python 开发的 client/server 系统,可以管理和监控类 UNIX 操作系统上面的进程. #组成部分 supervisord(s ...

  7. IIS 7.0、IIS 7.5 和 IIS 8.0 使用的 HTTP 状态代码【转载自微软官方】

    HTTP 状态代码 本部分描述 IIS 7.0.IIS 7.5 和 IIS 8.0 使用的 HTTP 状态代码. 注意 本文不会列出 HTTP 规范中所述的每个可能的 HTTP 状态代码.本文只包括 ...

  8. android中复制图片

    activity_main.xml中的配置 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/androi ...

  9. MTK刷机工具Flash_Tool部分4032错误解决办法

    MTK刷机工具Flash_Tool部分4032错误解决办法 先说明一点,这个办法不是万能的,我测试解决了以下两种情况下的4032: 1.本来正常的开发板,因为一次刷机失败后就一直变4032了 2.新开 ...

  10. Java code List Map, HashMap, JSON parser snippet

    package com.newegg.ec.solr.eventsalestoreservice.tuple; import kafka.message.MessageAndMetadata; pub ...