Building a Space Station
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 6635   Accepted: 3236

Description

You are a member of the space station engineering team, and are assigned a task in the construction process of the station. You are expected to write a computer program to complete the task.


The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is
quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible.




All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor', or
(3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively.




You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least
three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with
the shortest total length of the corridors.



You can ignore the width of a corridor. A corridor is built between points on two cells' surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form
a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect.

Input

The input consists of multiple data sets. Each data set is given in the following format.




n

x1 y1 z1 r1

x2 y2 z2 r2

...

xn yn zn rn



The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100.




The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after
the decimal point. Values are separated by a space character.



Each of x, y, z and r is positive and is less than 100.0.



The end of the input is indicated by a line containing a zero.

Output

For each data set, the shortest total length of the corridors should be printed, each in a separate line. The printed values should have 3 digits after the decimal point. They may not have an error greater than 0.001.




Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000.

Sample Input

3
10.000 10.000 50.000 10.000
40.000 10.000 50.000 10.000
40.000 40.000 50.000 10.000
2
30.000 30.000 30.000 20.000
40.000 40.000 40.000 20.000
5
5.729 15.143 3.996 25.837
6.013 14.372 4.818 10.671
80.115 63.292 84.477 15.120
64.095 80.924 70.029 14.881
39.472 85.116 71.369 5.553
0

Sample Output

20.000
0.000
73.834 好后悔选了prime,真是找不到好的题型,都一样啊,要是选了网络流多好,虽然我也不会
#include<cstdio>
#include<cstring>
#include<cmath>
#include<queue>
#include<algorithm>
using namespace std;
#define INF 0x3f3f3f
double map[1010][1010];
bool vis[1010];
int n;
double x[110],y[110],z[110],r[110];
double dis(int a,int b)
{
double s=sqrt((z[a]-z[b])*(z[a]-z[b])+(x[a]-x[b])*(x[a]-x[b])+(y[a]-y[b])*(y[a]-y[b]));
if(s-r[a]-r[b]<=0)
return 0;
return s-r[a]-r[b];
}
void init()
{
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
map[i][j]=i==j?0:INF;
}
void getmap()
{
for(int i=1;i<=n;i++)
scanf("%lf%lf%lf%lf",&x[i],&y[i],&z[i],&r[i]);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
map[i][j]=map[j][i]=dis(i,j);
}
void prime()
{
double Min,sum=0;
int next;
memset(vis,false,sizeof(vis));
vis[1]=true;
for(int i=2;i<=n;i++)
{
Min=INF;
for(int j=1;j<=n;j++)
{
if(!vis[j]&&Min>map[1][j])
{
next=j;
Min=map[1][j];
}
}
sum+=Min;
vis[next]=true;
for(int j=1;j<=n;j++)
if(!vis[j])
map[1][j]=min(map[1][j],map[next][j]);
}
printf("%.3lf\n",sum);
}
int main()
{
while(scanf("%d",&n),n)
{
init();
getmap();
prime();
}
return 0;
}

poj--2031--Building a Space Station(prime)的更多相关文章

  1. poj 2031 Building a Space Station(prime )

    这个题要交c++, 因为prime的返回值错了,改了一会 题目:http://poj.org/problem?id=2031 题意:就是给出三维坐标系上的一些球的球心坐标和其半径,搭建通路,使得他们能 ...

  2. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/C Description Yo ...

  3. POJ - 2031 Building a Space Station 【PRIME】

    题目链接 http://poj.org/problem?id=2031 题意 给出N个球形的 个体 如果 两个个体 相互接触 或者 包含 那么 这两个个体之间就能够互相通达 现在给出若干个这样的个体 ...

  4. POJ - 2031 Building a Space Station(计算几何+最小生成树)

    http://poj.org/problem?id=2031 题意 给出三维坐标系下的n个球体,求把它们联通的最小代价. 分析 最小生成树加上一点计算几何.建图,若两球体原本有接触,则边权为0:否则边 ...

  5. poj 2031 Building a Space Station(最小生成树,三维,基础)

    只是坐标变成三维得了,而且要减去两边的半径而已 题目 //最小生成树,只是变成三维的了 #define _CRT_SECURE_NO_WARNINGS #include<stdlib.h> ...

  6. poj 2031 Building a Space Station【最小生成树prime】【模板题】

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5699   Accepte ...

  7. POJ 2031 Building a Space Station【经典最小生成树】

    链接: http://poj.org/problem?id=2031 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  8. POJ - 2031 Building a Space Station 三维球点生成树Kruskal

    Building a Space Station You are a member of the space station engineering team, and are assigned a ...

  9. POJ 2031 Building a Space Station

    3维空间中的最小生成树....好久没碰关于图的东西了.....              Building a Space Station Time Limit: 1000MS   Memory Li ...

  10. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5173   Accepte ...

随机推荐

  1. JS——this与new

    this: 1.this只出现在函数中 2.谁调用函数,this就指的是谁 3.new People的this指的就是被创建的对象实例 new: 1.开辟内存空间,存储新创建的对象 2.把this设置 ...

  2. CSS中的disable,hidden,readonly

    项目中有时候需要对某个input进行隐藏或者禁止修改等. 需要隐藏某个input的时候就用hidden <input hidden="true" > 如果要禁止修改in ...

  3. (转) Arcgis for js之WKT和GEOMETRY的相互转换

    http://blog.csdn.net/gisshixisheng/article/details/44057453 1.wkt简介 WKT(Well-known text)是一种文本标记语言,用于 ...

  4. Windows Phone 8: NavigationInTransition实现页面切换效果

    NavigationInTransition这个是实现页面切换效果,而且没控件来拖,要自己手动写, 将App.xaml.cs中InitializePhoneApplication()函数里的RootF ...

  5. 【转载】使用IntelliJ IDEA 配置Maven(入门)

    1. 下载Maven 官方地址:http://maven.apache.org/download.cgi 解压并新建一个本地仓库文件夹 2.配置本地仓库路径   3.配置maven环境变量      ...

  6. iview表单密码自定义验证

    From中定义   ref="passwordForm" 获取dom节点  :model="passwordForm" 关联表单数据对象 :rules=&quo ...

  7. CF36E Two Paths (欧拉回路+构造)

    题面传送门 题目大意:给你一张可能有重边的不保证联通的无向图,现在要在这个图上找出两条路径,恰好能覆盖所有边一次,根据边的编号输出方案,无解输出-1 一道很不错的欧拉路径变形题 首先要知道关于欧拉路径 ...

  8. 安装RHEL7红帽操作系统

    1.单击“开启此虚拟机”启动RHEL 7系统安装. 开启虚拟机 2.通过键盘方向键选择Install Red Hat Enterprise Linux 7.0选项,然后回车,开始安装RHEL7操作系统 ...

  9. VMware Workstation 15 安装教程

    注:操作系统必须是64位    软件:360软件管家获取 1.运行下载完成的Vmware Workstation虚拟机软件包. 虚拟机软件的安装向导初始界面 2.在虚拟机软件的安装向导界面单击“下一步 ...

  10. (蓝桥杯)第八届A组C/C++方格分割

    #include<iostream> #include<memory.h> #include<stack> #include<string> #incl ...