Building a Space Station
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 6635   Accepted: 3236

Description

You are a member of the space station engineering team, and are assigned a task in the construction process of the station. You are expected to write a computer program to complete the task.


The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is
quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible.




All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor', or
(3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively.




You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least
three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with
the shortest total length of the corridors.



You can ignore the width of a corridor. A corridor is built between points on two cells' surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form
a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect.

Input

The input consists of multiple data sets. Each data set is given in the following format.




n

x1 y1 z1 r1

x2 y2 z2 r2

...

xn yn zn rn



The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100.




The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after
the decimal point. Values are separated by a space character.



Each of x, y, z and r is positive and is less than 100.0.



The end of the input is indicated by a line containing a zero.

Output

For each data set, the shortest total length of the corridors should be printed, each in a separate line. The printed values should have 3 digits after the decimal point. They may not have an error greater than 0.001.




Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000.

Sample Input

3
10.000 10.000 50.000 10.000
40.000 10.000 50.000 10.000
40.000 40.000 50.000 10.000
2
30.000 30.000 30.000 20.000
40.000 40.000 40.000 20.000
5
5.729 15.143 3.996 25.837
6.013 14.372 4.818 10.671
80.115 63.292 84.477 15.120
64.095 80.924 70.029 14.881
39.472 85.116 71.369 5.553
0

Sample Output

20.000
0.000
73.834 好后悔选了prime,真是找不到好的题型,都一样啊,要是选了网络流多好,虽然我也不会
#include<cstdio>
#include<cstring>
#include<cmath>
#include<queue>
#include<algorithm>
using namespace std;
#define INF 0x3f3f3f
double map[1010][1010];
bool vis[1010];
int n;
double x[110],y[110],z[110],r[110];
double dis(int a,int b)
{
double s=sqrt((z[a]-z[b])*(z[a]-z[b])+(x[a]-x[b])*(x[a]-x[b])+(y[a]-y[b])*(y[a]-y[b]));
if(s-r[a]-r[b]<=0)
return 0;
return s-r[a]-r[b];
}
void init()
{
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
map[i][j]=i==j?0:INF;
}
void getmap()
{
for(int i=1;i<=n;i++)
scanf("%lf%lf%lf%lf",&x[i],&y[i],&z[i],&r[i]);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
map[i][j]=map[j][i]=dis(i,j);
}
void prime()
{
double Min,sum=0;
int next;
memset(vis,false,sizeof(vis));
vis[1]=true;
for(int i=2;i<=n;i++)
{
Min=INF;
for(int j=1;j<=n;j++)
{
if(!vis[j]&&Min>map[1][j])
{
next=j;
Min=map[1][j];
}
}
sum+=Min;
vis[next]=true;
for(int j=1;j<=n;j++)
if(!vis[j])
map[1][j]=min(map[1][j],map[next][j]);
}
printf("%.3lf\n",sum);
}
int main()
{
while(scanf("%d",&n),n)
{
init();
getmap();
prime();
}
return 0;
}

poj--2031--Building a Space Station(prime)的更多相关文章

  1. poj 2031 Building a Space Station(prime )

    这个题要交c++, 因为prime的返回值错了,改了一会 题目:http://poj.org/problem?id=2031 题意:就是给出三维坐标系上的一些球的球心坐标和其半径,搭建通路,使得他们能 ...

  2. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/C Description Yo ...

  3. POJ - 2031 Building a Space Station 【PRIME】

    题目链接 http://poj.org/problem?id=2031 题意 给出N个球形的 个体 如果 两个个体 相互接触 或者 包含 那么 这两个个体之间就能够互相通达 现在给出若干个这样的个体 ...

  4. POJ - 2031 Building a Space Station(计算几何+最小生成树)

    http://poj.org/problem?id=2031 题意 给出三维坐标系下的n个球体,求把它们联通的最小代价. 分析 最小生成树加上一点计算几何.建图,若两球体原本有接触,则边权为0:否则边 ...

  5. poj 2031 Building a Space Station(最小生成树,三维,基础)

    只是坐标变成三维得了,而且要减去两边的半径而已 题目 //最小生成树,只是变成三维的了 #define _CRT_SECURE_NO_WARNINGS #include<stdlib.h> ...

  6. poj 2031 Building a Space Station【最小生成树prime】【模板题】

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5699   Accepte ...

  7. POJ 2031 Building a Space Station【经典最小生成树】

    链接: http://poj.org/problem?id=2031 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  8. POJ - 2031 Building a Space Station 三维球点生成树Kruskal

    Building a Space Station You are a member of the space station engineering team, and are assigned a ...

  9. POJ 2031 Building a Space Station

    3维空间中的最小生成树....好久没碰关于图的东西了.....              Building a Space Station Time Limit: 1000MS   Memory Li ...

  10. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5173   Accepte ...

随机推荐

  1. IE9的F12工具,"网络"页签,点击"开始捕获"之后,请求显示的状态是"挂起"的分析和解决

    最近一个项目,客户端使用用jQuery编写ajax请求,服务端采用struts2框架.js发送请求和action处理请求过程中,遇到一个问题.刚开始觉得问题很诡异,仔细定位很久之后才发现问题,虽然问题 ...

  2. 01--SQLite学习网站参考

    1.   SQLite基本操作 见我的02—SQLite一步到位 sqlite3编程笔记 . http://blog.csdn.net/wl_haanel/article/details/623141 ...

  3. 如何用java生成随机验证码

     1.VerifyCode 类:   1 package com.HRuinger.enity;                          ImageIO.write(image, " ...

  4. JAVA趣味逻辑算法

    /**已知4位同学中的一位数学考了100分,当小李询问这4位是谁考了100分时,4个人的回答如下: A说:不是我. B说:是C C说:是D. D说:他胡说. 已知三个人说的是真话,一个人说的是假话.现 ...

  5. illumina测序原理

    一些常用基本概念的介绍: flowcell流动池 是指Illumina测序时,测序反应发生的位置,1个flowcell含有8条lane lane通道 每一个flowcell上都有8条泳道,用于测序反应 ...

  6. Web前端性能优化——提高页面加载速度

    前言:  在同样的网络环境下,两个同样能满足你的需求的网站,一个“Duang”的一下就加载出来了,一个纠结了半天才出来,你会选择哪个?研究表明:用户最满意的打开网页时间是2-5秒,如果等待超过10秒, ...

  7. excel 类获取起始列和使用列

    m_excel.OpenWorkBook(sFileName, sSheetDrawingList); // Get drawing info int iStartRow = 0, iStartCol ...

  8. Git学习总结四(删除)

    一般情况下,你通常直接在文件管理器中把没用的文件删了,或者用rm命令删了: $ rm test.txt 这个时候,Git知道你删除了文件,因此,工作区和版本库就不一致了,git status命令会立刻 ...

  9. 解决hibernate删除时的异常 deleted object would be re-saved by cascade (remove deleted object from associa

    今天在做项目时,需要删除一个对象,由于关联关系是一对多和多对一的关系,于是在代码中需要删除多的一方的对象时出现了 deleted object would be re-saved by cascade ...

  10. c++ map: 根据value逆向查找key

    #include <iostream> #include <map> #include <algorithm> #include <vector> #i ...