gcd就是求a和b最大公约数,一般方法就是递推。不多说,上代码。

一.迭代法

int gcd(int m, int n)
{
while(m>)
{
int c = n % m;
n = m;
m = c;
}
return n;
}

二.递归法

int Gcd(int a, int b)
{
if(b == )
return a;
return Gcd(b, a % b);
}

但exgcd是个什么玩意???

百度了一下,百科这么讲的:

对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然

存在整数对 x,y ,使得 gcd(a,b)=ax+by。

好像很好理解的样子,百度还给了个代码

int gcd(int a,int b,int &x,int &y){
if (b==){
x=,y=;
return a;
}
int q=gcd(b,a%b,y,x);
y-=a/b*x;
return q;
}

???什么玩意???

于是我又找了一段证明:

证明:

         当 b=0 时,gcd(a,b)=a,此时 x=1 , y=0

         当 b!=0 时,

         设 ax1+by1=gcd(a,b)=gcd(b,a%b)=bx2+(a%b)y2

         又因 a%b=a-a/b*b

         则 ax1+by1=bx2+(a-a/b*b)y2

    ax1+by1=bx2+ay2-a/b*by2

    ax1+by1=ay2+bx2-b*a/b*y2

    ax1+by1=ay2+b(x2-a/b*y2)

    解得 x1=y2 , y1=x2-a/b*y2

    因为当 b=0 时存在 x , y 为最后一组解

    而每一组的解可根据后一组得到

    所以第一组的解 x , y 必然存在

    得证

于是刚才那段代码返回的是a和b的gcd

void exgcd(int a,int b)
{
if (b)
{
exgcd(b,a%b);
int k=x;
x=y;
y=k-a/b*y; //k就是上一组的x-- y1 = x2 - a/b*y2;
}
else y=(x=)-;
}

还有一个斐蜀定理。。。

若a,b是整数,且(a,b)=d,那么对于任意的整数x,y,ax+by都一定是d的倍数,特别地,一定存在整数x,y,使ax+by=d成立。

它的一个重要推论是:a,b互质的充要条件是存在整数x,y使ax+by=1.

gcd&&exgcd&&斐蜀定理的更多相关文章

  1. 数论入门——斐蜀定理与拓展欧几里得算法

    斐蜀定理 内容 斐蜀定理又叫贝祖定理,它的内容是这样的: 若$a,bin N$,那么对于任意x,y,方程$ax+by=gcd(a,b)*k(kin N)$一定有解,且一定有一组解使$ax+by=gcd ...

  2. 欧几里得算法(gcd) 裴蜀定理 拓展欧几里得算法(exgcd)

    欧几里得算法 又称辗转相除法 迭代求两数 gcd 的做法 由 (a,b) = (a,ka+b) 的性质:gcd(a,b) = gcd(b,a mod b) int gcd(int a,int b){ ...

  3. Wannafly挑战赛22 A-计数器(gcd,裴蜀定理)

    原题地址 题目描述 有一个计数器,计数器的初始值为0,每次操作你可以把计数器的值加上a1,a2,...,an中的任意一个整数,操作次数不限(可以为0次),问计数器的值对m取模后有几种可能. 输入描述: ...

  4. bzoj 2257: [Jsoi2009]瓶子和燃料【裴蜀定理+gcd】

    裴蜀定理:若a,b是整数,且gcd(a,b)=d,那么对于任意的整数x,y,ax+by都一定是d的倍数,特别地,一定存在整数x,y,使ax+by=d成立. 所以最后能得到的最小燃料书就是gcd,所以直 ...

  5. Gcd&Exgcd

    欧几里得算法: \[gcd(a,b)=gcd(b,a\bmod b)\] 证明: 显然(大雾) 扩展欧几里得及证明: 为解决一个形如 \[ax+by=c\] 的方程. 根据裴蜀定理,当且仅当 \[gc ...

  6. 初等数论-Base-2(扩展欧几里得算法,同余,线性同余方程,(附:裴蜀定理的证明))

    我们接着上面的欧几里得算法说 扩展欧几里得算法 扩展欧几里德算法是用来在已知a, b求解一组x,y,使它们满足贝祖等式\(^①\): ax+by = gcd(a, b) =d(解一定存在,根据数论中的 ...

  7. 【初等数论】裴蜀定理&扩展欧几里得算法

    裴蜀定理: 对于\(a,b\in N^*, x, y\in Z\),方程\(ax+by=k\)当且仅当\(gcd(a, b)|k\)时有解. 证明: 必要性显然. 充分性:只需证明当\(k=gcd(a ...

  8. 【BZOJ-2299】向量 裴蜀定理 + 最大公约数

    2299: [HAOI2011]向量 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1118  Solved: 488[Submit][Status] ...

  9. 【BZOJ-1441】Min 裴蜀定理 + 最大公约数

    1441: Min Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 471  Solved: 314[Submit][Status][Discuss] De ...

随机推荐

  1. javascript的严格模式:use strict

    ECMAscript 5添加的运行模式,禁止一些非标准.不安全的操作. <script> "use strict"; console.log("这是严格模式. ...

  2. Python 之mysql类封装

    import pymysql class MysqlHelper(object): conn = None def __init__(self, host, username, password, d ...

  3. Python 之类型转换

    # int(x[, base]) 将x转换为一个整数,base为进制,默认十进制 # # long(x[, base] ) 将x转换为一个长整数 # # float(x) 将x转换到一个浮点数 # # ...

  4. Ajax系列面试题总结

    1.Ajax是什么?如何创建一个Ajax? Ajax并不算是一种新的技术,全称是asychronous javascript and xml,可以说是已有技术的组合,主要用来实现客户端与服务器端的异步 ...

  5. linq 升序排序 空值放后面并根据另一个字段进行多重排序

    List<PickingInfo> res = GetDatas(); var _d = (from e in res select new { aa = e.pickingLibrary ...

  6. react 子组件调用父组件方法

    import React from 'react'import '../page1/header.css'import { Table } from 'antd'import Child from ' ...

  7. WING IDE 快捷键

    工欲善其事必先利其器,所以我们无论使用什么编译器,都要熟悉一些快捷键. Ctrl+N新建文件 Ctrl+O 打开文件夹 Ctrl+W 关闭当前文件 Ctrl+S 保存文件 Ctrl+shif+S 另存 ...

  8. CentOS6.8 安装python2.7,pip以及yum

    由于CentOS6.8里自带的yum所依赖的python是2.6.66版本,但是安装pip至少要求python是2.7版本,因而原有的2.6并不能卸载,又得安装新的2.7.之前安装的时候强制卸载了2. ...

  9. PAT 1047. Student List for Course

    Zhejiang University has 40000 students and provides 2500 courses. Now given the registered course li ...

  10. 【codeforces 797E】Array Queries

    [题目链接]:http://codeforces.com/problemset/problem/797/E [题意] 给你一个n个元素的数组; 每个元素都在1..n之间; 然后给你q个询问; 每个询问 ...