gcd就是求a和b最大公约数,一般方法就是递推。不多说,上代码。

一.迭代法

int gcd(int m, int n)
{
while(m>)
{
int c = n % m;
n = m;
m = c;
}
return n;
}

二.递归法

int Gcd(int a, int b)
{
if(b == )
return a;
return Gcd(b, a % b);
}

但exgcd是个什么玩意???

百度了一下,百科这么讲的:

对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然

存在整数对 x,y ,使得 gcd(a,b)=ax+by。

好像很好理解的样子,百度还给了个代码

int gcd(int a,int b,int &x,int &y){
if (b==){
x=,y=;
return a;
}
int q=gcd(b,a%b,y,x);
y-=a/b*x;
return q;
}

???什么玩意???

于是我又找了一段证明:

证明:

         当 b=0 时,gcd(a,b)=a,此时 x=1 , y=0

         当 b!=0 时,

         设 ax1+by1=gcd(a,b)=gcd(b,a%b)=bx2+(a%b)y2

         又因 a%b=a-a/b*b

         则 ax1+by1=bx2+(a-a/b*b)y2

    ax1+by1=bx2+ay2-a/b*by2

    ax1+by1=ay2+bx2-b*a/b*y2

    ax1+by1=ay2+b(x2-a/b*y2)

    解得 x1=y2 , y1=x2-a/b*y2

    因为当 b=0 时存在 x , y 为最后一组解

    而每一组的解可根据后一组得到

    所以第一组的解 x , y 必然存在

    得证

于是刚才那段代码返回的是a和b的gcd

void exgcd(int a,int b)
{
if (b)
{
exgcd(b,a%b);
int k=x;
x=y;
y=k-a/b*y; //k就是上一组的x-- y1 = x2 - a/b*y2;
}
else y=(x=)-;
}

还有一个斐蜀定理。。。

若a,b是整数,且(a,b)=d,那么对于任意的整数x,y,ax+by都一定是d的倍数,特别地,一定存在整数x,y,使ax+by=d成立。

它的一个重要推论是:a,b互质的充要条件是存在整数x,y使ax+by=1.

gcd&&exgcd&&斐蜀定理的更多相关文章

  1. 数论入门——斐蜀定理与拓展欧几里得算法

    斐蜀定理 内容 斐蜀定理又叫贝祖定理,它的内容是这样的: 若$a,bin N$,那么对于任意x,y,方程$ax+by=gcd(a,b)*k(kin N)$一定有解,且一定有一组解使$ax+by=gcd ...

  2. 欧几里得算法(gcd) 裴蜀定理 拓展欧几里得算法(exgcd)

    欧几里得算法 又称辗转相除法 迭代求两数 gcd 的做法 由 (a,b) = (a,ka+b) 的性质:gcd(a,b) = gcd(b,a mod b) int gcd(int a,int b){ ...

  3. Wannafly挑战赛22 A-计数器(gcd,裴蜀定理)

    原题地址 题目描述 有一个计数器,计数器的初始值为0,每次操作你可以把计数器的值加上a1,a2,...,an中的任意一个整数,操作次数不限(可以为0次),问计数器的值对m取模后有几种可能. 输入描述: ...

  4. bzoj 2257: [Jsoi2009]瓶子和燃料【裴蜀定理+gcd】

    裴蜀定理:若a,b是整数,且gcd(a,b)=d,那么对于任意的整数x,y,ax+by都一定是d的倍数,特别地,一定存在整数x,y,使ax+by=d成立. 所以最后能得到的最小燃料书就是gcd,所以直 ...

  5. Gcd&Exgcd

    欧几里得算法: \[gcd(a,b)=gcd(b,a\bmod b)\] 证明: 显然(大雾) 扩展欧几里得及证明: 为解决一个形如 \[ax+by=c\] 的方程. 根据裴蜀定理,当且仅当 \[gc ...

  6. 初等数论-Base-2(扩展欧几里得算法,同余,线性同余方程,(附:裴蜀定理的证明))

    我们接着上面的欧几里得算法说 扩展欧几里得算法 扩展欧几里德算法是用来在已知a, b求解一组x,y,使它们满足贝祖等式\(^①\): ax+by = gcd(a, b) =d(解一定存在,根据数论中的 ...

  7. 【初等数论】裴蜀定理&扩展欧几里得算法

    裴蜀定理: 对于\(a,b\in N^*, x, y\in Z\),方程\(ax+by=k\)当且仅当\(gcd(a, b)|k\)时有解. 证明: 必要性显然. 充分性:只需证明当\(k=gcd(a ...

  8. 【BZOJ-2299】向量 裴蜀定理 + 最大公约数

    2299: [HAOI2011]向量 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1118  Solved: 488[Submit][Status] ...

  9. 【BZOJ-1441】Min 裴蜀定理 + 最大公约数

    1441: Min Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 471  Solved: 314[Submit][Status][Discuss] De ...

随机推荐

  1. JS——设置cookie

    cookie 用来识别用户. <html> <head> <script type="text/javascript"> function ge ...

  2. MFC TAB控件顺序

    在MFC中添加控件后,按Ctrl+d可以改变控件TAB顺序,怕自己忘了,一个神奇的东西,记下. 关于改变Tab顺序的方法有以下几种: 方法一:在动态创建控件的时候STYLE设置成为WS_CHILD|W ...

  3. 如何让git忽略指定的文件

    有些文件,我们修改后,并不需要git提交更改,可以在.gitignore里面设置过滤规则 在.gitignore文件里面输入 *.zip 表示所有zip文件忽略更改 /bin 表示忽略整个根目录的bi ...

  4. mysql在windows上安装

    一.在window上安装mysql MySQL是一个小巧玲珑但功能强大的数据库,目前十分流行.但是官网给出的安装包有两种格式,一个是msi格式,一个是zip格式的.很多人下了zip格式的解压发现没有s ...

  5. [SQL Server] 常用sql脚本

    1.添加表 GO IF NOT EXISTS(SELECT * FROM sys.tables WHERE name='table_name') BEGIN CREATE TABLE [dbo].[t ...

  6. Git ——Tool

    Git: 何为Git: Git 是一个可以实时记录文件变化.维护文件的安全的一个仓库! Git仓库是由** Linux 系统之父 Linus Torvalds ** 创建的一个开源 的软件!Githu ...

  7. 洛谷 3391 【模板】文艺平衡树 Treap区间翻转

    [题解] 用Treap维护这个序列. 加入的时候直接插入到末尾,这样Treap就变成一棵以插入时间先后为排序关键字的二叉搜索树. 对于翻转操作,我们分裂出需要翻转的区间,给这个区间的root打一个翻转 ...

  8. 一个电商项目的Web服务化改造4:方案和架构,通用接口的定义和实现

        最近一直在做一个电商项目,需要把原有单系统架构的项目,改造成基于服务的架构,SOA.     有点挑战,做完了,会有很大进步. 上一篇,我们明确了我们的"规范和约定". 从 ...

  9. BZOJ 4327 [JSOI2012]玄武密码 (AC自动机)

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=4327 题解: 做法挺显然,建出AC自动机之后在上面跑,标记所有走过的点,然后再进行递推 ...

  10. hdu2003 求绝对值【C++】

    求绝对值 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...