洛谷 P2709 BZOJ 3781 小B的询问
题目描述
小B有一个序列,包含N个1~K之间的整数。他一共有M个询问,每个询问给定一个区间[L..R],求$\sum_1^Kc_i^2$的值,其中$c_i$表示数字i在[L..R]中的重复次数。小B请你帮助他回答询问。
输入输出格式
输入格式:
第一行,三个整数N、M、K。
第二行,N个整数,表示小B的序列。
接下来的M行,每行两个整数L、R。
输出格式:
M行,每行一个整数,其中第i行的整数表示第i个询问的答案。
输入输出样例
6 4 3
1 3 2 1 1 3
1 4
2 6
3 5
5 6
6
9
5
2
说明
对于全部的数据,1<=N、M、K<=50000
吐槽
BZOJ居然把这题设成权限题,我们这种穷人做不起啊,放个题号吧。
我的代码在洛谷上跑的挺快,刚开始没开O2,跑了1900+ms,然后去大牛分站交了一波,瞬间540毫秒,rank3了啊!估计我的程序最大的耗时处在两个sort上,algorithm里的东西和STL里的东西缺氧,吸了氧就跑得飞快,几乎是缺氧时的四倍速度了。
后来加快读、乘法换成位运算、另开一个数组$O(m)$记录答案而不是第二次排序,尤其是最后一项,整整少了60ms,终于卡到了473ms,目前的洛谷rank1.
解题思路
一道裸的莫队。莫队的原理可以看我这篇博文,每个莫队题目最重要的步骤都是推导出区间中减少一个元素或加入一个元素后答案的变化。
这题推公式不难。设当前区间$[l,r]$的答案为$t$,那么增加(l--或r++)一个元素时,设增加元素的颜色为k (l-1或r+1),$f(k)$为题目中的$c(k)$,那么$t+=(f(k)+1)^2-f^2(k)=2*f(k)+1$,同理,减少一个颜色为k的元素时$t-=f^2(k)-(f(k)-1)^2=2*f(k)-1$,于是就套上莫队的标志“四个while”吧。
源代码
#include<cmath>
#include<cstdio>
#include<algorithm>
using namespace std; inline int get()
{
char c;short f = ; int res = ;
while (( (c=getchar())<||c>) && c!= '-');
if (c=='-') f = -;
else res = c- '';
while ( (c = getchar()) >= && c <= )
res = res * + c -'';
return f *res;
} int n,m,k;
int c[]={};
int f[]={}; struct query{
int id,pos,l,r,ans;
}a[];
int aa[]={};
inline int cmp1(const query & a,const query & b)
{
return a.pos==b.pos?a.r<b.r:a.pos<b.pos;
}
int main()
{
n=get(),m=get(),k=get();
for(int i=;i<=n;i++)
c[i]=get();
for(int i=,l,r,kuai=sqrt(n);i<=m;i++)
{
l=get();
r=get();
a[i]={i,l/kuai,l,r,};
}
sort(a+,a++m,cmp1);
for(int i=,l=,r=,t=;i<=m;i++)
{
while(r<a[i].r)
{
r+=;
t+=(f[c[r]]<<)+;
f[c[r]]+=;
}
while(l<a[i].l)
{
t-=(f[c[l]]<<)-;
f[c[l]]--;
l++;
}
while(l>a[i].l)
{
l--;
t+=(f[c[l]]<<)+;
f[c[l]]++;
}
while(r>a[i].r)
{
t-=(f[c[r]]<<)-;
f[c[r]]--;
r--;
}
a[i].ans=t;
}
for(int i=;i<=m;i++) aa[a[i].id]=a[i].ans-;
for(int i=;i<=m;i++) printf("%d\n",aa[i]);
return ;
}
洛谷 P2709 BZOJ 3781 小B的询问的更多相关文章
- 洛谷P2709 BZOJ 3781 小B的询问 (莫队)
题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重 ...
- BZOJ 3781: 小B的询问
3781: 小B的询问 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 643 Solved: 435[Submit][Status][Discuss ...
- bzoj 3781: 小B的询问 分块
3781: 小B的询问 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 196 Solved: 135[Submit][Status] Descrip ...
- Bzoj 3781: 小B的询问 莫队,分块,暴力
3781: 小B的询问 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 426 Solved: 284[Submit][Status][Discuss ...
- 【模板】BZOJ 3781: 小B的询问 莫队算法
http://www.lydsy.com/JudgeOnline/problem.php?id=3781 N个数的序列,每次询问区间中每种数字出现次数的平方和,可以离线. 丢模板: #include ...
- bzoj 3781 小B的询问——分块
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3781 非常经典的分块套路.于是时间空间比大家的莫队差了好多…… #include<io ...
- bzoj 3781 小B的询问 —— 莫队
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3781 就是莫队,左端点分块排序,块内按右端点排序,然后直接做即可. 代码如下: #inclu ...
- bzoj 3781 小B的询问(莫队算法)
[题意] 若干个询问sigma{ cnt[i]^2 } cnt[i]表示i在[l,r]内的出现次数. [思路] 莫队算法,裸题. 一个cnt数组即可维护插入与删除. [代码] #include< ...
- BZOJ 3781: 小B的询问 [莫队]
求区间每种颜色出现次数平方和 写裸题练手 #include <iostream> #include <cstdio> #include <algorithm> #i ...
随机推荐
- bootstrap简单form表单样式-form-horizontal
jsp代码: <div id="content" style="background-color: white;"> <form class= ...
- Cash Machine(多重背包)
http://poj.org/problem?id=1276 #include <stdio.h> #include <string.h> ; #define Max(a,b) ...
- php文件,文件夹
例子代码:<?php$f='/www/htdocs/index.html';$path_parts = pathinfo($f);echo $path_parts['dirname'], &qu ...
- IntelliJ IDEA/PyCharm/WebStorm 2019.1.2 注册码激活
[IDEA2019.1.2最新版版本激活,直接查看底部] 网上IntelliJ IDEA激活方式大多均已失效,目前常用激活方式为License Server 激活: http://idea.imsxm ...
- POJ 1523 Tarjan求割点
SPF Description Consider the two networks shown below. Assuming that data moves around these network ...
- Nmap linux端口扫描神器
#简介 Nmap亦称为Network Mapper(网络映射)是一个开源并且通用的用于Linux系统/网络管理员的工具.nmap用于探查网络.执行安全扫描.网络核查并且在远程机器上找出开放端口.它可以 ...
- OPPO R9sPlus MIFlash线刷TWRP Recovery ROOT详细教程
教程转载来自 残芯此生不换 OPPO R9sPlus 目前最简单的刷Recovery root 方法,强烈推荐 新机想要刷第三方卡刷包的最简单过程是: 手机关机-->下载M ...
- Clustered Index Scan 与 Clustered Index Seek
Clustered Index Scan 与 Clustered Index Seek 在利用 SQL Server 查询分析器的执行计划中,会有许多扫描方式,其中就有 Clustered Index ...
- VHDL之concurrent之block
1 Simple BLOCK The simple block represents only a way of partitioning the code. It allows concurrent ...
- Altova MapForce AMS/ACI/ISF自定义模板
目前为止,我在百度上得到关于MapForce的信息少之又少,所以把自己的一些经验写下来,与大家分享. 如果要生成xml的话,就可以直接创建xml架构当作数据的目标文件. 以下是我做的AMS&A ...