先上题目

Sum of Factorials

                  Time Limit:500MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu

Description

Given an integer n, you have to find whether it can be expressed as summation of factorials. For given n, you have to report a solution such that

n = x1! + x2! + ... + xn! (xi < xj for all i < j)

Input

Input starts with an integer T (≤ 10000), denoting the number of test cases.

Each case starts with a line containing an integer n (1 ≤ n ≤ 1018).

Output

For each case, print the case number and the solution in summation of factorial form. If there is no solution then print 'impossible'. There can be multiple solutions, any valid one will do. See the samples for exact formatting.

Sample Input

4

7

7

9

11

Sample Output

Case 1: 1!+3!

Case 2: 0!+3!

Case 3: 1!+2!+3!

Case 4: impossible

Hint

Be careful about the output format; you may get wrong answer for wrong output format.

  这一题题意就是给你一个数,问哪些数的阶乘等于这个数,并按照样例从小到大输出这些数的每一项,其中每一项只可以用一次,如果不存在这些数,就输出impossible。

一开始看的时候第一个想到的是用dfs,然后就很轻松地写出的代码,可是发现样例的第四个case卡住了很久,然后就加了一个约束条件,不过时间复杂度还是比较大,跑10个case还是要10ms,而题目要求仅有500ms,于是想了很久怎样优化,看榜发现很多人都很快过了这题,心里有点急,可是心越急就越想不出来,后来干脆把这题丢到一边,想其他题,后来又过了一题以后就继续这题,因为题目要求的数据范围是1~10^18,用longlong不会爆,而且这时才想起阶乘数的一个特征,相邻两项的差距是越来越大的,某一个数的前面所有数的和加起来也不够这个数大,于是就以这个为策略使用贪心算法,结果代码不长,然后wa了一次,检查发现是打表数字打错了,= =。后来听人家说这一题我们是做过的,所以其他人才过的这么快,= =。看来以后做完题目要总结一下。

上代码:

 #include <stdio.h>
#include <string.h>
#include <map>
#define MAX 10000
using namespace std; long long p[]={,,,,,,,,,,,,,,,,,,,,};
bool mark[]; bool check(long long n,int q)
{
if(n==) return ;
int i;
for(i=q;i>=;i--)
{
if(n>=p[i]) break;
}
q=i;
if(mark[q]) return ;
mark[q]=;
if(check(n-p[q],q-)) return ;
mark[q]=;
return ;
} int main()
{
//freopen("data.txt","r",stdin);
int i,j,t,c;
long long n;
scanf("%d",&t);
for(i=;i<=t;i++)
{
scanf("%lld",&n);
memset(mark,,sizeof(mark));
printf("Case %d: ",i);
if(!check(n,)) printf("impossible\n");
else
{
c=;
for(j=;j<=;j++)
{
if(mark[j])
{
if(c++) printf("+");
printf("%d!",j);
}
}
printf("\n");
}
} return ;
}

1189

LightOJ - 1189 - Sum of Factorials的更多相关文章

  1. 每日一九度之 题目1038:Sum of Factorials

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:2109 解决:901 题目描述: John von Neumann, b. Dec. 28, 1903, d. Feb. 8, 1957, ...

  2. POJ 1775 (ZOJ 2358) Sum of Factorials

    Description John von Neumann, b. Dec. 28, 1903, d. Feb. 8, 1957, was a Hungarian-American mathematic ...

  3. 九度OJ 1038:Sum of Factorials(阶乘的和) (DP、递归)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:1845 解决:780 题目描述: John von Neumann, b. Dec. 28, 1903, d. Feb. 8, 1957, ...

  4. LightOj 1278 - Sum of Consecutive Integers(求奇因子的个数)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1278 题意:给你一个数n(n<=10^14),然后问n能用几个连续的数表示; 例 ...

  5. LightOJ 1278 - Sum of Consecutive Integers 分解奇因子 + 思维

    http://www.lightoj.com/volume_showproblem.php?problem=1278 题意:问一个数n能表示成几种连续整数相加的形式 如6=1+2+3,1种. 思路:先 ...

  6. POJ 1775 Sum of Factorials (ZOJ 2358)

    http://poj.org/problem?id=1775 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1334 题目大意: ...

  7. zoj 2358,poj 1775 Sum of Factorials(数学题)

    题目poj 题目zoj //我感觉是题目表述不确切,比如他没规定xi能不能重复,比如都用1,那么除了0,都是YES了 //算了,这种题目,百度来的过程,多看看记住就好 //题目意思:判断一个非负整数n ...

  8. POJ 1775 Sum of Factorials 数论,基础题

    输入一个小于1000000的正整数,是否能表达成式子:a1!+a2!+a3!+...+an (a1~an互不相等). 因为10!>1000000,所以先打1~10的阶乘表.从a[10]开始递减判 ...

  9. LightOJ Beginners Problems 部分题解

    相关代码请戳 https://coding.net/u/tiny656/p/LightOJ/git 1006 Hex-a-bonacci. 用数组模拟记录结果,注意取模 1008 Fibsieve's ...

随机推荐

  1. HTML如何让IMG自动适应DIV容器大小

    版权声明:本文为博主原创文章,未经博主允许不得转载.作者:沙师弟专栏 https://blog.csdn.net/u014597198/article/details/80403946HTML如何让I ...

  2. luogu2154 [SDOI2009] 虔诚的墓主人 离散化 树状数组 扫描线

    题目大意 公墓可以看成一块N×M的矩形,矩形的每个格点,要么种着一棵常青树,要么是一块还没有归属的墓地.一块墓地的虔诚度是指以这块墓地为中心的十字架的数目,一个十字架可以看成中间是墓地,墓地的正上.正 ...

  3. 弹出框中选项卡的运用(easyUI)

    先看一下页面效果: 此处有两个知识点:一个是弹出框的运用,一个是选项卡的运用 分析一下该HTML代码,最外面一个div是弹出框的,默认是关闭状态,可通过ID来控制弹出框的开关,该div的样式是easy ...

  4. Git 少用 Pull 多用 Fetch 和 Merge 【已翻译100%】【转】

    本文转载自:https://www.oschina.net/translate/git-fetch-and-merge?lang=chs&page=1# 本文有点长而且有点乱,但就像Mark ...

  5. SQL 导出表数据存储过程

    SET ANSI_NULLS ON GO SET QUOTED_IDENTIFIER ON GO -- ============================================= -- ...

  6. hash哈希

    我复习的时候,突然发现没写过hash算法,惊讶!!!赶紧补一下. 把字符串看成base进制的数.Hash值比较就是为了判断是否有相同的字符串.(base是自己定义的大于26的质数,个人认为大一点比较好 ...

  7. Python入门 老司机带你上路

    Phthon安装 https://www.python.org/download/releases/2.7.5/ 安装结束还没完,我们还差最后一步:设置环境变量.这是什么东西我暂时先不解释,大家照着做 ...

  8. php 制作略缩图

    一.需求 最近公司的项目中有个需求,就是用户上传自己的微信二维码,然后系统会自动将用户的微信二维码合并到产品中 二.分析 因为该系统是手机端的,所以从用户端的体验出发,用户当然是直接在微信上保存二维码 ...

  9. css3动画之1--animation小例子

    1.首先看效果 2.代码及分析 <style type="text/css"> #div1 { margin:100px; position: absolute; te ...

  10. Django中关于MySQL的bug总结

    bug one: You are trying to add a non-nullable field 'height' to person without a default; we can't d ...