• Graph

    class Graph(dict):
    def __init__(self, vs=[], es=[]):
    for v in vs:
    self.add_vertex(v)
    for e in es:
    self.add_edge(e)
    # 必须全部的顶点添加完毕之后,才可以添加新的边进去
    def add_vertex(self, v):
    self[v] = {}
    def add_edge(self, e):
    v, w = e
    self[v][w] = e
    self[w][v] = e
    # 无向边以双向连接的方式实现;
  • vertex

    class Vertex(object):
    def __init__(self, label=''):
    self.label = label
    der __repr__(self):
    return 'Vertex(%s)' % self.label
    __str__ = __repr__
  • edge

    class Edge(tuple):
    def __new__(cls, e1, e2):
    return tuple.__new__(cls, (e1, e2))
    def __repr(self):
    return 'Edge(%s, %s)' % (repr(self[0]), repr(self[1]))
    __str__ = __repr__

面向对象举例(一) —— 顶点(vertex)、边(edge)与图(graph)的更多相关文章

  1. [转自Matrix67] 趣题:顶点数为多少的图有可能和自己互补

    若干个顶点以及某些顶点和顶点之间的连线,就构成了一个"图".如果对某个图进行变换,使得原来任意两个有连线的顶点之间都不再有连线,原来任意两个没有连线的顶点之间现在都有连线了,那么所 ...

  2. 边捆绑: Content Importance Based Edge Bundling for Graph Visualization

    Problem 当图所要表达的信息较多时, 图中可能会充满交叉的线[1-2], 甚至整个显示空间都被点.线所覆盖, 这时想通过观察来获取图中的重要信息将会变得非常困难, 这种现象称为图的视觉混乱. K ...

  3. 图:无向图(Graph)基本方法及Dijkstra算法的实现 [Python]

    一般来讲,实现图的过程中需要有两个自定义的类进行支撑:顶点(Vertex)类,和图(Graph)类.按照这一架构,Vertex类至少需要包含名称(或者某个代号.数据)和邻接顶点两个参数,前者作为顶点的 ...

  4. Java邻接表表示加权有向图,附dijkstra最短路径算法

    从A到B,有多条路线,要找出最短路线,应该用哪种数据结构来存储这些数据. 这不是显然的考查图论的相关知识了么, 1.图的两种表示方式: 邻接矩阵:二维数组搞定. 邻接表:Map<Vertext, ...

  5. GraphX编程指南

    GraphX编程指南 概述 入门 属性图 属性图示例 图算子 算子摘要列表 属性算子 结构化算子 Join算子 最近邻聚集 汇总消息(a​​ggregateMessages) Map Reduce三元 ...

  6. java 数据结构 图

    以下内容主要来自大话数据结构之中,部分内容参考互联网中其他前辈的博客,主要是在自己理解的基础上进行记录. 图的定义 图是由顶点的有穷非空集合和顶点之间边的集合组成,通过表示为G(V,E),其中,G标示 ...

  7. 四川第七届 D Vertex Cover(二分图最小点覆盖,二分匹配模板)

    Vertex Cover frog has a graph with nn vertices v(1),v(2),…,v(n)v(1),v(2),…,v(n) and mm edges (v(a1), ...

  8. PAT甲级——1134 Vertex Cover (25 分)

    1134 Vertex Cover (考察散列查找,比较水~) 我先在CSDN上发布的该文章,排版稍好https://blog.csdn.net/weixin_44385565/article/det ...

  9. 顶点的度 (20 分) Java解法

    顶点的度 顶点的图.给定一个有向图,输出各顶点的出度和入度. 输入格式: 输入文件中包含多个测试数据,每个测试数据描述了一个无权有向图.每个测试数据的第一行为两个正整数n 和m,1 ≤ n ≤ 100 ...

随机推荐

  1. Android系统开发(5)——Eclipse for C/C++

    一.下载JDK 官方下载地址:http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html 二 ...

  2. DOS命令具体解释

    net use $">\\ip\ipc$Content$nbsp;" " /user:" " 建立IPC空链接   net use $" ...

  3. 【计算机】基本概念的理解 —— 沙盒(sandbox)、交互式计算/编程/应用

    web scraper:网络铲: scraper:n. 刮刀:铲土机:守财奴: 1. 交互式计算/编程/应用(interactive computing/application/programming ...

  4. 使用Perl批量读取文件最后行

    使用Perl批量读取文件最后行 面对成百上千个文件,有时我们需要查看它的最后行,单个文件打开将耗费大量时间,而通过Perl提取出最后行,将快速的帮助我们处理繁琐的事务. 特性 整个目录完全遍历,自动提 ...

  5. 安装使用jupyter(原来的notebook)

    1.安装pyzmq 使用pip install pyzmq,安装不成功. 使用easy_install.exe pyzmq.成功安装. 2.安装tornado pip tornado 安装完尚不成功. ...

  6. BZOJ 1588 HNOI2002 营业额统计 裸Treap

    题目大意:...题目描写叙述不全看这里好了 给定一个序列 对于每一个元素我们定义该数的最小波动值为这个数与前面全部数的差中的最小值(第一个数的最小波动值为第一个数本身) 求最小波动值之和 找近期的数仅 ...

  7. jquery-10 jquery中的绑定事件和解绑事件的方法是什么

    jquery-10 jquery中的绑定事件和解绑事件的方法是什么 一.总结 一句话总结:bind(); unbind(); one(); 1. jquery中的绑定事件和解绑事件的方法是什么? bi ...

  8. windows server 2012 AD 活动目录部署加入域并创建域用户(寻找视频课程)(计算机加入域其实是本计算机的管理员账号(本机名)加入域,关联账号即可在已经加入域的计算机上面登录)

    windows server 2012 AD 活动目录部署加入域并创建域用户(寻找视频课程)(计算机加入域其实是本计算机的管理员账号(本机名)加入域,关联账号即可在已经加入域的计算机上面登录) 一.总 ...

  9. 【74.89%】【codeforces 551A】GukiZ and Contest

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  10. 新版Sublime text3注册码被移除的解决办法

    Sublime Text是风靡世界的文本编辑器,支持多种编程语言,启动时间短,打开文件速度快,插件丰富,让很多程序员爱不释手.但是,对于未注册的Sublime Text, 经常在保存的时候会弹出一个烦 ...