多线程可以共享全局变量,多进程不能。多线程中,所有子线程的进程号相同;多进程中,不同的子进程进程号不同。

#!/usr/bin/python
# -*- coding:utf-8 -*-
import os
import threading
import multiprocessing
count_thread = 0
count_process = 0 # worker function
def worker1(sign, lock):
global count_thread
lock.acquire()
count_thread += 1
print(sign, os.getpid())
lock.release() def worker2(sign, lock):
global count_process
lock.acquire()
count_process += 1
print(sign, os.getpid())
lock.release()
# Main
print('Main:',os.getpid()) # Multi-thread
record = []
lock = threading.Lock()
for i in range(5):
thread = threading.Thread(target=worker1,args=('thread',lock))
thread.start()
record.append(thread) for thread in record:
thread.join() # Multi-process
record = []
lock = multiprocessing.Lock()
for i in range(5):
process = multiprocessing.Process(target=worker2,args=('process',lock))
process.start()
record.append(process) for process in record:
process.join() print count_thread
print count_process

运行结果

('Main:', 3142)
('thread', 3142)
('thread', 3142)
('thread', 3142)
('thread', 3142)
('thread', 3142)
('process', 3148)
('process', 3149)
('process', 3150)
('process', 3151)
('process', 3152)
5
0

应该尽量避免多进程共享资源。多进程共享资源必然会带来进程间相互竞争。而这种竞争又会造成race condition,我们的结果有可能被竞争的不确定性所影响。但如果需要,我们依然可以通过共享内存和Manager对象这么做。

1) 共享内存

用Python实现的例子:

import multiprocessing

def f(n, a):
n.value = 3.14
a[0] = 5 num = multiprocessing.Value('d', 0.0)
arr = multiprocessing.Array('i', range(10)) p = multiprocessing.Process(target=f, args=(num, arr))
p.start()
p.join() print num.value
print arr[:]

这里我们实际上只有主进程和Process对象代表的进程。我们在主进程的内存空间中创建共享的内存,也就是Value和Array两个对象。对象Value被设置成为双精度数(d), 并初始化为0.0。而Array则类似于C中的数组,有固定的类型(i, 也就是整数)。在Process进程中,我们修改了Value和Array对象。回到主程序,打印出结果,主程序也看到了两个对象的改变,说明资源确实在两个进程之间共享。

2)Manager

Manager对象类似于服务器与客户之间的通信 (server-client),与我们在Internet上的活动很类似。我们用一个进程作为服务器,建立Manager来真正存放资源。其它的进程可以通过参数传递或者根据地址来访问Manager,建立连接后,操作服务器上的资源。在防火墙允许的情况下,我们完全可以将Manager运用于多计算机,从而模仿了一个真实的网络情境。下面的例子中,我们对Manager的使用类似于shared memory,但可以共享更丰富的对象类型。

import multiprocessing

def f(x, arr, l):
x.value = 3.14
arr[0] = 5
l.append('Hello') server = multiprocessing.Manager()
x = server.Value('d', 0.0)
arr = server.Array('i', range(10))
l = server.list() proc = multiprocessing.Process(target=f, args=(x, arr, l))
proc.start()
proc.join() print(x.value)
print(arr)
print(l)

Manager利用list()方法提供了表的共享方式。实际上你可以利用dict()来共享词典,Lock()来共享threading.Lock(注意,我们共享的是threading.Lock,而不是进程的mutiprocessing.Lock。后者本身已经实现了进程共享)等。 这样Manager就允许我们共享更多样的对象。

参考资料:

http://blog.csdn.net/zhaozhi406/article/details/8137670

http://www.xuebuyuan.com/1968817.html

  

  

  

python 多线程和多进程的区别 mutiprocessing theading的更多相关文章

  1. python多线程与多进程及其区别

    个人一直觉得对学习任何知识而言,概念是相当重要的.掌握了概念和原理,细节可以留给实践去推敲.掌握的关键在于理解,通过具体的实例和实际操作来感性的体会概念和原理可以起到很好的效果.本文通过一些具体的例子 ...

  2. python面试题之python多线程与多进程的区别

    多线程可以共享全局变量,多进程不能 多线程中,所有子线程的进程号相同,多进程中,不同的子进程进程号不同 线程共享内存空间:进程的内存是独立的 同一个进程的线程之间可以直接交流:两个进程想通信,必须通过 ...

  3. python多线程与多进程的区别

    在UNIX平台上,当某个进程终结之后,该进程需要被其父进程调用wait,否则进程成为僵尸进程(Zombie).所以,有必要对每个Process对象调用join()方法 (实际上等同于wait).对于多 ...

  4. Python 多线程、多进程 (二)之 多线程、同步、通信

    Python 多线程.多进程 (一)之 源码执行流程.GIL Python 多线程.多进程 (二)之 多线程.同步.通信 Python 多线程.多进程 (三)之 线程进程对比.多线程 一.python ...

  5. Python多线程和多进程谁更快?

    python多进程和多线程谁更快 python3.6 threading和multiprocessing 四核+三星250G-850-SSD 自从用多进程和多线程进行编程,一致没搞懂到底谁更快.网上很 ...

  6. python多线程与多进程--存活主机ping扫描以及爬取股票价格

    python多线程与多进程 多线程: 案例:扫描给定网络中存活的主机(通过ping来测试,有响应则说明主机存活) 普通版本: #扫描给定网络中存活的主机(通过ping来测试,有响应则说明主机存活)im ...

  7. Python 多线程、多进程 (三)之 线程进程对比、多进程

    Python 多线程.多进程 (一)之 源码执行流程.GIL Python 多线程.多进程 (二)之 多线程.同步.通信 Python 多线程.多进程 (三)之 线程进程对比.多线程 一.多线程与多进 ...

  8. Python 多线程、多进程 (一)之 源码执行流程、GIL

    Python 多线程.多进程 (一)之 源码执行流程.GIL Python 多线程.多进程 (二)之 多线程.同步.通信 Python 多线程.多进程 (三)之 线程进程对比.多线程 一.python ...

  9. 基于Windows平台的Python多线程及多进程学习小结

    python多线程及多进程对于不同平台有不同的工具(platform-specific tools),如os.fork仅在Unix上可用,而windows不可用,该文仅针对windows平台可用的工具 ...

随机推荐

  1. CSS中的路径裁剪样式clip-path

    前面的话 CSS借鉴了SVG裁剪的概念,设置了clip-path样式,本文将详细介绍路径裁剪clip-path 概述 clip-path属性可以防止部分元素通过定义的剪切区域来显示,仅通过显示的特殊区 ...

  2. Apache开启压缩功能

    起源 在一般的web服务器中,都会开启压缩功能,也就是deflate或者是gzip的压缩. 开启压缩功能主要的目的是为了减少传输的带宽,从而当服务器响应给客户端的时候,会大大减少传输的数据,代价就是在 ...

  3. VMware bridge 桥接方式连接internet

    经过反复测试,关于VMware内虚拟机(包括ubuntu linux和windows)连接internet 目前的结论是 使用bridge方式时,VMware相当于一个交换机(switch),虚拟机和 ...

  4. oracle 数据的导入导出

    一.数据导出 1.为输出路径建立一个数据库的directory对象. create or replace directory dumpdir as 'd:\'; 可以通过:select * from ...

  5. Linux shell中的竖线(|)——…

    原文地址:Linux shell中的竖线(|)--管道符号作者:潇潇 管道符号,是unix一个很强大的功能,符号为一条竖线:"|". 用法: command 1 | command ...

  6. 第二次项目冲刺(Beta阶段)5.22

    1.提供当天站立式会议照片一张 会议内容: ①检查前一天的任务情况,将遇到的困难反馈.解决. ②制定新一轮的任务计划. 2.每个人的工作 (1)工作安排 队员 今日进展 明日安排 王婧 #53(完成) ...

  7. 个人作业3——个人总结(Alphe)

    小结: 1.软件工程的第一阶段终于结束了,说实话,每个人的课程都很紧张,在这么紧张的时期我们都每周抽出一些时间来开个小会总结或者计划软件工程的相关任何非常难得,大家的态度都诚恳认真,我亦是如此,只是我 ...

  8. 【Beta阶段】第五次scrum meeting

    Coding/OSChina 地址 1. 会议内容 学号 主要负责的方向 昨日任务 昨日任务完成进度 接下去要做 99 PM 查阅换肤功能相关资料 100% 着手联网功能 100 DEV 完成分享邀请 ...

  9. C语言之算法初步(汉诺塔--递归算法)

    个人觉得汉诺塔这个递归算法比电子老鼠的难了一些,不过一旦理解了也还是可以的,其实网上也有很多代码,可以直接参考.记得大一开始时就做过汉诺塔的习题,但是那时代码写得很长很长,也是不理解递归的结果.现在想 ...

  10. 201521123073 《Java程序设计》第6周学习总结

    1. 本章学习总结 2. 书面作业 1.clone方法 1.1 Object对象中的clone方法是被protected修饰,在自定义的类中覆盖clone方法时需要注意什么? 1.2 自己设计类时,一 ...