最短路径之Dijkstra算法和Floyd-Warshall算法
最短路径算法
最短路径算法通常用在寻找图中任意两个结点之间的最短路径或者是求全局最短路径,像是包括Dijkstra、A*、Bellman-Ford、SPFA(Bellman-Ford的改进版本)、Floyd-Warshall、Johnson、BFS等等,这里要集中介绍Dijkstra和Floyd,前者用来处理任意两个结点之间的最短路径,后者处理图中所有的最短路径。
Dijkstra算法
理解
其思想为,我们首先纪录下每个点到原点的距离,这个距离会在每一轮遍历的过程中刷新。每一个结点到原点的最短路径是其前驱结点到原点的最短路径加上前驱结点到当前结点的路径和。
我们以下面这幅图片为例,假定起始结点为1,求该结点到其余各个结点的最短路径。

执行步骤为:
| 步骤 | 描述 | 前驱结点 |
|---|---|---|
| 1 | 将当前结点到其它结点的路径都初始化为无穷大 | 无 |
| 2 | 依次计算每个结点的路径长度,此时可以获得结点1到其它的结点2、3、4、5、6的路径长度为[7, 9, ∞,∞,14]`,取其中最小的值7,结点2作为前驱结点 | 无 |
| 3 | 此时通过结点2可以到达结点4和5,并且其路径等于起始结点到前驱结点的路径加上前驱结点到目标结点的路径长度,因此此时结点1到其它结点3、4、5、6的路径长度为[17, 22, ∞, ∞],此时将现在的路径长度和之前的路径长度进行比较,取对应的较小值,得到最短距离[9, 22, ∞, 14],取其最小值9,结点3更新成前驱结点 | 2 |
| 4 | 同样的道理,此时结点1到其它的结点4、5、6的路径长度为[20, ∞, 11],和之前的路径长度进行比较,得到最短距离[20, ∞, 11],取最小值11,结点6作为前驱结点 | 3 |
| 5 | 同样的道理,得到结点1到其它的结点4, 5的路径长度为[20, 20],和之前对比,最短距离更新成[20,20] | 6 |
| 6 | 因为此时剩下了两个相等路径长度的结点,取任意一个结点,结果都是一样的,所以取哪个都可以 |
其伪函数如下:
function Dijkstra(G, w, s)
for each vertex v in V[G] # 初始化
d[v] := infinity # 將各點的已知最短距離先設成無窮大
previous[v] := undefined # 各点的已知最短路径上的前趋都未知
d[s] := 0 # 因为出发点到出发点间不需移动任何距离,所以可以直接将s到s的最小距离设为0
S := empty set
Q := set of all vertices
while Q is not an empty set # Dijkstra演算法主體
u := Extract_Min(Q)
S.append(u)
for each edge outgoing from u as (u,v)
if d[v] > d[u] + w(u,v) # 拓展边(u,v)。w(u,v)为从u到v的路径长度。
d[v] := d[u] + w(u,v) # 更新路径长度到更小的那个和值。
previous[v] := u # 紀錄前趨頂點
其中的Extract_Min为提取最小值。
实现
import sys
class Graph():
def __init__(self, vertices):
self.V = vertices
self.graph = [[0 for _ in range(self.V)] for _ in range(self.V)]
# 打印距离
def print_distance(self, dist, parent):
for node in range(self.V):
print('distance')
print(node, dist[node])
print('path')
self.print_path(parent, node)
print('---------')
# 打印路径
def print_path(self, parent, j):
if parent[j] == -1:
print(j)
return
self.print_path(parent, parent[j])
print(j)
# 找出最小距离的结点
def min_distance(self, dist, sptSet):
min_val = sys.maxsize
min_index = 0
for v in range(self.V):
if dist[v] < min_val and not sptSet[v]:
min_val = dist[v]
min_index = v
return min_index
# 核心算法
def dijkstra(self, src):
dist = [sys.maxsize] * self.V
dist[src] = 0
sptSet = [False] * self.V
parent = [-1] * self.V
for count in range(self.V):
# 找出前驱结点
u = self.min_distance(dist, sptSet)
sptSet[u] = True
# 如果某个节点的路径大于经过前驱结点的路径,则更新结果成经过前驱结点的路径
for v in range(self.V):
if self.graph[u][v] > 0 and not sptSet[v] and dist[v] > dist[u] + self.graph[u][v]:
dist[v] = dist[u] + self.graph[u][v]
parent[v] = u
self.print_distance(dist, parent)
g = Graph(8)
g.graph = [[0, 0, 7, 7, 2, 0, 0, 0],
[0, 0, 3, 8, 0, 0, 8, 0],
[7, 3, 0, 0, 0, 7, 0, 0],
[7, 8, 0, 0, 0, 0, 0, 0],
[2, 0, 0, 0, 0, 0, 0, 8],
[0, 0, 7, 0, 0, 0, 8, 0],
[0, 8, 0, 0, 0, 8, 0, 6],
[0, 0, 0, 0, 8, 0, 6, 0]]
g.dijkstra(0)

Floyd
理解
其原理为:假定存在某个结点k在结点i和结点j之间,如果i和j之间的路径长度大于经过k到,则将其距离更新成经过结点k的路径长度。因此在实现中使用三个循环即可,但是要注意循环的顺序,最外层是结点k的遍历,这样可以避免i和j的遍历过早的把最短路径给定下来。

结果为:

实现
import copy
INF = 1e9
class Graph():
def __init__(self, graph):
self.V = len(graph)
self.graph = graph
# 打印距离
def print_distance(self, dist):
for i in range(self.V):
for j in range(self.V):
print('%5s' % (dist[i][j] if dist[i][j] != INF else 'INF'), end='')
print('')
# 核心算法
def floydwarshall(self):
dist = copy.deepcopy(self.graph)
for k in range(self.V):
for i in range(self.V):
for j in range(self.V):
# 不考虑自己指向自己的情况
if i == j:
continue
dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j])
self.print_distance(dist)
g = Graph([[INF, INF, 1, INF, INF, INF, INF, INF],
[INF, INF, 2, 8, INF, 5, INF, INF],
[9, INF, INF, INF, 2, INF, INF, INF],
[INF, INF, INF, INF, INF, 2, INF, INF],
[INF, INF, INF, INF, INF, INF, INF, 9],
[INF, INF, INF, INF, INF, INF, INF, INF],
[INF, INF, INF, INF, 1, INF, INF, INF],
[INF, INF, INF, INF, INF, 7, 7, INF]])
g.floydwarshall()
最短路径之Dijkstra算法和Floyd-Warshall算法的更多相关文章
- 最短路径—大话Dijkstra算法和Floyd算法
Dijkstra算法 算法描述 1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , ...
- 最短路径——Dijkstra算法和Floyd算法
Dijkstra算法概述 Dijkstra算法是由荷兰计算机科学家狄克斯特拉(Dijkstra)于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图(无 ...
- 最短路径Dijkstra算法和Floyd算法整理、
转载自:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html 最短路径—Dijkstra算法和Floyd算法 Dijks ...
- 【转】最短路径——Dijkstra算法和Floyd算法
[转]最短路径--Dijkstra算法和Floyd算法 标签(空格分隔): 算法 本文是转载,原文在:最短路径-Dijkstra算法和Floyd算法 注意:以下代码 只是描述思路,没有测试过!! Di ...
- 【转载】Dijkstra算法和Floyd算法的正确性证明
说明: 本文仅提供关于两个算法的正确性的证明,不涉及对算法的过程描述和实现细节 本人算法菜鸟一枚,提供的证明仅是自己的思路,不保证正确,仅供参考,若有错误,欢迎拍砖指正 ----------- ...
- Dijkstra算法和Floyd算法的正确性证明
说明: 本文仅提供关于两个算法的正确性的证明,不涉及对算法的过程描述和实现细节 本人算法菜鸟一枚,提供的证明仅是自己的思路,不保证正确,仅供参考,若有错误,欢迎拍砖指正 ------------- ...
- 最短路径—Dijkstra算法和Floyd算法
原文链接:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html 最后边附有我根据文中Dijkstra算法的描述使用jav ...
- 最短路径—Dijkstra算法和Floyd算法【转】
本文来自博客园的文章:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html Dijkstra算法 1.定义概览 Dijk ...
- 图的最短路径——dijkstra算法和Floyd算法
dijkstra算法 求某一顶点到其它各个顶点的最短路径:已知某一顶点v0,求它顶点到其它顶点的最短路径,该算法按照最短路径递增的顺序产生一点到其余各顶点的所有最短路径. 对于图G={V,{E}};将 ...
随机推荐
- SQL Server Alwayson读写分离配置
标签:MSSQL/只读路由 概述 Alwayson相对于数据库镜像最大的优势就是可读副本,带来可读副本的同时还添加了一个新的功能就是配置只读路由实现读写分离:当然这里的读写分离稍微夸张了一点,只能称之 ...
- winfrom DataSet和实体类的相互转换
最近做WInfrom项目,对表格和控件的数据绑定非常喜欢用实体类对象来解决,但是绑定以后 又怎么从控件中拿到实体类或者转换为datatable 或者dataset呢 经过在网上的搜索以及自己的改进 完 ...
- Thrift生成的bean对象,用java内省操作时注意(自己笔记)
项目需要,需要使用内省操作,将数据写入thrift生成的bean里,于是按常理getWritedMethod.invoke 结果发现set方法找不到,结果看了下thrift自己生成的bean里,set ...
- Hadoop 2.7 伪分布式环境搭建
1.安装环境 ①.一台Linux CentOS6.7 系统 hostname ipaddress subnet mask ...
- java源码学习(四)ArrayList
ArrayList ArrayList是基于数组实现的,是一个动态数组,其容量能自动增长,类似于C语言中的动态申请内存,动态增长内存. ArrayList不是线程安全的,只能用在单线程环境下, ...
- jquery hide和show使用
$("#qitarenyuanDiv").hide("fast");$("#qitarenyuanDiv").show("fast ...
- laravel中token的使用方式
在form表单里提交表单时,可 <form action="" method="post"> <?php echo csrf_field() ...
- 无法为具有固定名称“MySql.Data.MySqlClient”的 ADO.NET 提供程序加载在应用程序配置文件中注册的实体框架提供程序类型“MySql.Data.MySqlClient.MySqlProviderServices,MySql.Data.Entity.EF6”
"System.InvalidOperationException"类型的未经处理的异常在 mscorlib.dll 中发生 其他信息: 无法为具有固定名称"MySql. ...
- 常见的JQuery应用举例
在学习JS之后,JQuery(以下简称JQ)为我们提供了一种更加便捷和简单的操作模式,利用它开发人员将更为高效的进行工作,下面将一些常见的问题进行举例. 1.点击某处弹出提醒,例如某些游戏在注册时会弹 ...
- 【巨杉答疑】巨杉数据库和mongodb有什么关系吗?
哈罗,艾瑞巴蒂~巨杉答疑栏目今日上线啦! 巨杉数据库作为商业化开源软件,已经拥有大量社区用户.开源至今,大到分布式数据库原理.架构问题,小到SDB巨杉数据库的安装使用问题,大家似乎都有很多问题想要和我 ...