题目背景

矩阵快速幂

题目描述

给定n*n的矩阵A,求A^k

输入输出格式

输入格式:

第一行,n,k

第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素

输出格式:

输出A^k

共n行,每行n个数,第i行第j个数表示矩阵第i行第j列的元素,每个元素模10^9+7

输入输出样例

输入样例#1:

2 1
1 1
1 1
输出样例#1:

1 1
1 1

说明

n<=100, k<=10^12, |矩阵元素|<=1000 算法:矩阵快速幂


如题,矩阵快速幂。

已知,矩阵乘法:

第一个矩阵:

5 6 7

8 9 4

第二个矩阵:

2 3 7

2 4 8

8 3 6

相乘得:

5*2+6*2+7*8  5*3+6*4+7*3  5*7+6*8+7*6

8*2+9*2+4*8  8*3+9*4+4*3  8*7+9*8+4*6

即:

78  60  125

36  72  152

再利用快速幂可得答案。

最后附上经我们喻队(

PIPIBoss

)指点的代码:

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#define ll long long
using namespace std;
ll read()
{
ll x=,y=;
char ch=getchar();
while(ch<''||ch>'')
{
if(ch=='-')
y=-;
ch=getchar();
}
while(ch>=''&&ch<='')
{
x=x*+ch-'';
ch=getchar();
}
return x*y;
}
int n;
ll k;
struct ju
{
ll a[][];
inline ju operator *(const ju &b)const//inline用来定义内联函数,即在类中用的函数,可以加快速度。
{                      //该函数的作用是来重载*号运算符。
ju tmp;
for(int i=; i<=n; i++)
for(int j=; j<=n; j++)
{
tmp.a[i][j]=;
for(int k=; k<=n; k++)
{
tmp.a[i][j]+=a[i][k]*b.a[k][j];
tmp.a[i][j]%=;
}
}
return tmp;
}
}ans;
ju pow(ju a,ll k)
{
ju tmp=a;
k--;
while(k)
{
if(k&)
tmp=tmp*a;
a=a*a;
k>>=;
}
return tmp;
}
int main()
{
scanf("%d%lld",&n,&k);
for(int i=; i<=n; i++)
for(int j=; j<=n; j++)
ans.a[i][j]=read();
ans=pow(ans,k);
for(int i=; i<=n; i++)
{
for(int j=; j<=n; j++)
printf("%lld ",ans.a[i][j]);
putchar('\n');
}
return ;
} // FOR C.H.

最后的最后,别忘了加上头文件,我一开始就是因为没加头文件错了几次。

P3390 【模板】矩阵快速幂的更多相关文章

  1. ACM-ICPC 2018 焦作赛区网络预赛- L:Poor God Water(BM模板/矩阵快速幂)

    God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him t ...

  2. 3990 [模板]矩阵快速幂 洛谷luogu

    题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格式: 输出A^k ...

  3. 【洛谷P3390】矩阵快速幂

    矩阵快速幂 题目描述 矩阵乘法: A[n*m]*B[m*k]=C[n*k]; C[i][j]=sum(A[i][1~n]+B[1~n][j]) 为了便于赋值和定义,我们定义一个结构体储存矩阵: str ...

  4. 【洛谷 p3390】模板-矩阵快速幂(数论)

    题目:给定n*n的矩阵A,求A^k. 解法:利用矩阵乘法的定义和快速幂解答.注意用负数,但是数据太弱没有卡到我......(P.S.不要在 typedef long long  LL; 前使用 LL. ...

  5. Luogu P3390 【模板】矩阵快速幂&&P1939 【模板】矩阵加速(数列)

    补一补之前的坑 因为上次关于矩阵的那篇blog写的内容太多太宽泛了,所以这次把一些板子和基本思路理一理 先看这道模板题:P3390 [模板]矩阵快速幂 首先我们知道矩阵乘法满足结合律而不满足交换律的一 ...

  6. 模板【洛谷P3390】 【模板】矩阵快速幂

    P3390 [模板]矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 矩阵A的大小为n×m,B的大小为n×k,设C=A×B 则\(C_{i,j}=\sum\limits_{k=1}^{n}A_{i, ...

  7. Luogu P3390 【模板】矩阵快速幂

    题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格式: 输出A^k ...

  8. 矩阵快速幂模板(pascal)

    洛谷P3390 题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格 ...

  9. luoguP3390(矩阵快速幂模板题)

    链接:https://www.luogu.org/problemnew/show/P3390 题意:矩阵快速幂模板题,思路和快速幂一致,只需提供矩阵的乘法即可. AC代码: #include<c ...

随机推荐

  1. struts2.1.6教程一、准备工作及实例

    1.解压struts-2.1.6-all.zip apps目录:struts2自带的例子程序 docs目录:官方文档. lib 目录:存放所有jar文件. Src 目录:源文%件存放地 2.六个基本包 ...

  2. javaWeb学习总结(8)- JSP中的九个内置对象(4)

    一.JSP运行原理 每个JSP 页面在第一次被访问时,WEB容器都会把请求交给JSP引擎(即一个Java程序)去处理.JSP引擎先将JSP翻译成一个_jspServlet(实质上也是一个servlet ...

  3. javaWeb学习总结(1)- Tomcat服务器学习和使用(2)

    一.Tomcat服务器端口的配置 Tomcat的所有配置都放在conf文件夹之中,里面的server.xml文件是配置的核心文件. 如果想修改Tomcat服务器的启动端口,则可以在server.xml ...

  4. 开涛spring3(4.3) - 资源 之 4.3 访问Resource

    4.3.1  ResourceLoader接口 ResourceLoader接口用于返回Resource对象:其实现可以看作是一个生产Resource的工厂类. public interface Re ...

  5. iOS-swift-基础篇1

    一.swift是啥?答:百度. 二.swift基础知识. 1.输出函数:print print("Hello, world!") 2.简单数据类型 变量声明:var 常量声明:le ...

  6. GoodReads: Machine Learning (Part 3)

    In the first installment of this series, we scraped reviews from Goodreads. In thesecond one, we per ...

  7. 【java8】慎用java8的foreach循环

    虽然java8出来很久了,但是之前用的一直也不多,最近正好学习了java8,推荐一本书还是不错的<写给大忙人看的javase8>.因为学习了Java8,所以只要能用到的地方都会去用,尤其是 ...

  8. Docker - docker machine

    前言 之前在使用docker的时候,对于docker-machine的理解有一些误解(之前一直以为docker-machine和docker-engine等价的,只不过是在window或者mac平台上 ...

  9. javaSE_05Java中方法(函数)与重载、递归

    1.方法的声明和调用 什么是方法?为什么需要方法?代码复用,方便软件升级 什么是方法? 具备特定功能的一段独立的代码段 标准的方法格式:(注意格式的顺序) 修饰符 返回值类型 方法名(参数类型 参数名 ...

  10. java设计模式之 装饰器模式

    装饰器模式 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其结构. 这种类型的设计模式属于结构型模式,它是作为现有的类的一个包装. 这种模式创建了一个装 ...