本章主要内容:

  1. k-临近算法是通过对象本身的特征将对象划分到某一类型中去,比如电影中的题材类型的分类是,可能就会考虑到电影中出现的镜头出现的次数的多少将电影划分为动作电影,爱情电影等等,本次的随笔参考了《机器学习实战》中第二章节,将电影自动进行分类。
  2. 从文本文件中解析和导入数据
  3. 使用matplotlib创建散点图
  4. 归一化数值

言归正传,首先介绍一些关于K临近算法(KNN):

  1. 工作原理

存在已知的数据集,并且已知的数据集中的每个数都有标签,也就是说我们知道已知数据集的每个元素的分类情况,在输入新的没有标签的数据之后,将新的数据的每个特征与样本集中的数据特征进行比较,然后算法提取样本集中特种最相近的数据的分类标签。

2. 电影的事例

电影名称   打斗镜头 亲昵的镜头 电影类型
California man 3 104   爱情片
He's not really inot dudes  2 100 爱情片
BeautifulWomen 1 84 爱情片
Kevin longblade 101   10 动作片
Robo slayer 300 101 5 动作片
Apple II 98 2 动作片
?某个电影 18 90 未知

从表中可以看到不同分类的电影,其中的分类信息也是很明确的,但是未知电影与样本集的其他电影的距离,分别为20.5,18.7,19.2,115,3,117,4,118.9。可以找到K个距离最近的电影,假设k=3,则最近的距离的电影为C,H, B三个,,按照knn临近算法,距离最近的三部电影的类型决定了未知电影的类型,而这三部全是爱情片,因此我们可以从中推断未知电影史爱情片。

3. 上个例子中的knn算法的实现

(1) 计算已知类别数据集中的点与当前点的之间的距离;

(2) 按照距离的递增一次排序;

(3) 选取与当前点距离最小的k个点;

(4) 确定前k个点所在的分类的出现频率;

(5) 返回前k个点出现频率最高的类别的作为当前点的预测类别。

4.  下一博文将把python作为主要语言进行语法展示,将整个功能用python语言进行实现。

自己按照书上的讲解,进行简单的描述,有大段的内容是来自书本上,本文就是想把自己的一个思路理清楚,同时相当于把笔记做好了,贵在坚持。

k-临近算法学习的更多相关文章

  1. [Machine-Learning] K临近算法-简单例子

    k-临近算法 算法步骤 k 临近算法的伪代码,对位置类别属性的数据集中的每个点依次执行以下操作: 计算已知类别数据集中的每个点与当前点之间的距离: 按照距离递增次序排序: 选取与当前点距离最小的k个点 ...

  2. 机器学习(Machine Learning)算法总结-K临近算法

    一.算法详解 1.什么是K临近算法 Cover 和 Hart在1968年提出了最初的临近算法 属于分类(classification)算法 邻近算法,或者说K最近邻(kNN,k-NearestNeig ...

  3. 秒懂机器学习---k临近算法(KNN)

    秒懂机器学习---k临近算法(KNN) 一.总结 一句话总结: 弄懂原理,然后要运行实例,然后多解决问题,然后想出优化,分析优缺点,才算真的懂 1.KNN(K-Nearest Neighbor)算法的 ...

  4. K临近算法

    K临近算法原理 K临近算法(K-Nearest Neighbor, KNN)是最简单的监督学习分类算法之一.(有之一吗?) 对于一个应用样本点,K临近算法寻找距它最近的k个训练样本点即K个Neares ...

  5. 机器学习-- 入门demo1 k临近算法

    1.k-近邻法简介 k近邻法(k-nearest neighbor, k-NN)是1967年由Cover T和Hart P提出的一种基本分类与回归方法. 它的工作原理是:存在一个样本数据集合,也称作为 ...

  6. 机器学习2—K近邻算法学习笔记

    Python3.6.3下修改代码中def classify0(inX,dataSet,labels,k)函数的classCount.iteritems()为classCount.items(),另外p ...

  7. Python推荐算法学习1

    1.闵可夫斯基距离 闵可夫斯基距离可以概括曼哈顿距离与欧几里得距离.  其中r越大,单个维度差值大小会对整体产生更大的影响.这个很好理解,假设当r=2时一个正方形对角线长度,永远是r=3时正方体对角线 ...

  8. 02-16 k近邻算法

    目录 k近邻算法 一.k近邻算法学习目标 二.k近邻算法引入 三.k近邻算法详解 3.1 k近邻算法三要素 3.1.1 k值的选择 3.1.2 最近邻算法 3.1.3 距离度量的方式 3.1.4 分类 ...

  9. 《机器学习实战》学习笔记一K邻近算法

     一. K邻近算法思想:存在一个样本数据集合,称为训练样本集,并且每个数据都存在标签,即我们知道样本集中每一数据(这里的数据是一组数据,可以是n维向量)与所属分类的对应关系.输入没有标签的新数据后,将 ...

随机推荐

  1. 玩玩微信公众号Java版之五:获取关注用户信息

    在关注者与公众号产生消息交互后,公众号可获得关注者的OpenID(加密后的微信号,每个用户对每个公众号的OpenID是唯一的.对于不同公众号,同一用户的openid不同).公众号可通过本接口来根据Op ...

  2. Spring AOP 和 动态代理技术

    AOP 是什么东西 首先来说 AOP 并不是 Spring 框架的核心技术之一,AOP 全称 Aspect Orient Programming,即面向切面的编程.其要解决的问题就是在不改变源代码的情 ...

  3. python数据结构之链表

    在程序中,经常需要将⼀组(通常是同为某个类型的)数据元素作为整体 管理和使⽤,需要创建这种元素组,⽤变量记录它们,传进传出函数等. ⼀组数据中包含的元素个数可能发⽣变化(可以增加或删除元素). 对于这 ...

  4. python数据结构链表之单向链表

    单向链表 单向链表也叫单链表,是链表中最简单的一种形式,它的每个节点包含两个域,一个信息域(元素域)和一个链接域.这个链接指向链表中的下一个节点,而最后一个节点的链接域则指向一个空值. 表元素域ele ...

  5. (转)IBM MQ 创建以及常见问题集锦

    背景:这篇文章还是很全面的,但是很杂乱 后面慢慢整理吧! 1 MQ 消息队列+发送队列+消息通道 接收通道名称与发送端的发送通道名称要一致,修改通道信息后要执行 start channle(chlna ...

  6. iOS项目冗余资源扫描脚本

    iOS项目冗余资源扫描脚本 随着iOS项目的版本不断迭代,app中冗余文件会越来越多,app size也持续增加,是时候需要对app冗余资源进行检测,对app进行瘦身. 使用方法: 1. 运行环境为m ...

  7. Golang使用pprof和qcachegrind进行性能监控

    Golang为我们提供了非常方便的性能测试工具pprof,使用pprof可以非常方便地对Go程序的运行效率进行监测.本文讲述如何使用pprof对Go程序进行性能测试,并使用qcachegrind查看性 ...

  8. Swift4 Json

    swift4 带来了原生的json解析,它们分别是 JSONDecoder和JSONEncoder,使用起来还算方便,不过为了更方便,我把它们又进行了简单的封装: class JsonHelper { ...

  9. 种下一棵树:有旋Treap

    第一个平衡树板子,有旋Treap.用随机函数规定一个堆,维护点权的同时维护堆的性质,可以有效地避免退化成链.按我的理解,建立一棵二叉排序树,树的形态会和给出节点的顺序有关.按照出题人很机智定理,数据肯 ...

  10. MongoDB3.4安装配置以及与Robomongo1.1的连接——解决Authentication Failed导致的不能连接问题

    本文环境:win10(64)+MongoDB(3.4.5)+Robomongo(1.1) 目录: MongoDB的安装 MongoDB的配置 Robomongo的安装以及与MongoDB的连接 一些新 ...