Description

漆黑的晚上,九条可怜躺在床上辗转反侧。难以入眠的她想起了若干年前她的一次悲惨的OI 比赛经历。那是一道基础的树状数组题。给出一个长度为 n 的数组 A,初始值都为 0,接下来进行 m 次操作,操作有两种:

1 x,表示将 Ax 变成 (Ax + 1) mod 2。
2 l r,表示询问 sigma(Ai) mod 2,L<=i<=r
尽管那个时候的可怜非常的 simple,但是她还是发现这题可以用树状数组做。当时非常young 的她写了如下的算法:
1: function Add(x)
2: while x > 0 do
3: A
x ← (Ax + 1) mod 2
4: x ← x ? lowbit(x)
5: end while
6: end function
7:
8: function Find(x)
9: if x == 0 then
10: return 0
11: end if
12: ans ← 0
13: while x ≤ n do
14: ans ← (ans + Ax) mod 2
15: x ← x + lowbit(x)
16: end while
17: return ans
18: end function
19:
20: function Query(l, r)
21: ansl ← Find(l ? 1)
22: ansr ← Find(r)
23: return (ansr ? ansl + 2) mod 2
24: end function
其中 lowbit(x) 表示数字 x 最?的非 0 二进制位,例如 lowbit(5) = 1, lowbit(12) = 4。进行第一类操作的时候就调用 Add(x),第二类操作的时候答案就是 Query(l, r)。如果你对树状数组比较熟悉,不难发现可怜把树状数组写错了: Add和Find 中 x 变化的方向反了。因此这个程序在最终测试时华丽的爆 0 了。然而奇怪的是,在当时,这个程序通过了出题人给出的大样例——这也是可怜没有进行对拍的原因。现在,可怜想要算一下,这个程序回答对每一个询问的概率是多少,这样她就可以再次的感受到自己是一个多么非的人了。然而时间已经过去了很多年,即使是可怜也没有办法完全回忆起当时的大样例。幸运的是,她回忆起了大部分内容,唯一遗忘的是每一次第一类操作的 x的值,因此她假定这次操作的 x 是在 [li, ri] 范围内 等概率随机 的。具体来说,可怜给出了一个长度为 n 的数组 A,初始为 0,接下来进行了 m 次操作:
1 l r,表示在区间 [l, r] 中等概率选取一个 x 并执行 Add(x)。
2 l r,表示询问执行 Query(l, r) 得到的结果是正确的概率是多少。

Input

第一行输入两个整数 n, m。
接下来 m 行每行描述一个操作,格式如题目中所示。
N<=10^5,m<=10^5,1<=L<=R<=N

Output

对于每组询问,输出一个整数表示答案。如果答案化为最简分数后形如 x/y,那么你只需要输出 x*y^?1 mod 998244353 后的值。(即输出答案模 998244353)。

Sample Input

5 5
1 3 3
2 3 5
2 4 5
1 1 3
2 2 5

Sample Output

1
0
665496236
在进行完 Add(3) 之后, A 数组变成了 [0, 1, 1, 0, 0]。所以前两次询问可怜的程序答案都是1,因此第一次询问可怜一定正确,第二次询问可怜一定错误。

正解:树套树(二维线段树)。

这道题好绕。。其实如果你打表,或者是深知树状数组的原理的话,你就可以发现,询问的时候其实是查询后缀和。

那么对于每个询问,如果$l!=1$,那么我们查询的其实是$[l-1,r-1]$这段区间。而$[l-1,r-1]$与$[l,r]$仅有$l-1$和$r$这两个元素有区别。所以我们每次询问就是问$l-1$和$r$的修改次数在模2意义下是否相等。

那么我们可以把每个询问看成$(l-1,r)$这个点,那么这就是个二维选点问题了,我们用树套树来维护。外层的树维护第一维坐标,内层的树维护第二维坐标。我们维护的值就是这个点的两个坐标修改次数在模2意义下相等的概率。

如何合并概率呢?当两个点被修改的概率分别为$p1,p2$时,两个点修改次数相等的概率是$p=p1*p2+(1-p1)*(1-p2)$,这个式子也适用于合并操作。

当$l=1$时,情况类似,我们要求的就变成了对于$r$这个点,它的前缀和是否与它的后缀和相等。维护思想与$l!=1$的情况类似。

这道题的修改操作有点复杂,我在代码里加一点注释吧。。

然后我被$uoj$的$hack$数据卡常了$woc$。。

 //It is made by wfj_2048~
#include <algorithm>
#include <iostream>
#include <complex>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#define rhl (998244353)
#define lson (x<<1)
#define rson (x<<1|1)
#define mid ((l+r)>>1)
#define inf (1<<30)
#define N (100010)
#define il inline
#define RG register
#define ll long long
#define merge(p1,p2) ( (p1*p2+(1-p1+rhl)*(1-p2+rhl))%rhl ) //合并操作
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout) using namespace std; int ls[*N],rs[*N],rt[*N],sz; //二维线段树
ll sum[*N],ans;
int n,m; il int gi(){
RG int x=,q=; RG char ch=getchar();
while ((ch<'' || ch>'') && ch!='-') ch=getchar();
if (ch=='-') q=-,ch=getchar();
while (ch>='' && ch<='') x=x*+ch-,ch=getchar();
return q*x;
} //求逆元
il ll qpow(RG ll a,RG ll b){
RG ll ans=;
while (b){
if (b&) ans=ans*a;
a=a*a,b>>=;
if (ans>=rhl) ans%=rhl;
if (a>=rhl) a%=rhl;
}
return ans;
} //内层线段树修改
il void update(RG int &x,RG int l,RG int r,RG int xl,RG int xr,RG ll v){
if (!x) sum[x=++sz]=;
if (xl<=l && r<=xr){
sum[x]=merge(sum[x],v);
return;
}
if (xr<=mid) update(ls[x],l,mid,xl,xr,v);
else if (xl>mid) update(rs[x],mid+,r,xl,xr,v);
else update(ls[x],l,mid,xl,mid,v),update(rs[x],mid+,r,mid+,xr,v);
return;
} //内层线段树查询
il void query(RG int x,RG int l,RG int r,RG int p){
if (!x) return; ans=merge(ans,sum[x]); if (l==r) return;
p<=mid?query(ls[x],l,mid,p):query(rs[x],mid+,r,p); return;
} //外层线段树修改
il void Update(RG int x,RG int l,RG int r,RG int l1,RG int r1,RG int l2,RG int r2,RG ll v){
if (l1<=l && r<=r1){ update(rt[x],,n+,l2,r2,v); return; }
if (r1<=mid) Update(lson,l,mid,l1,r1,l2,r2,v);
else if (l1>mid) Update(rson,mid+,r,l1,r1,l2,r2,v);
else Update(lson,l,mid,l1,mid,l2,r2,v),Update(rson,mid+,r,mid+,r1,l2,r2,v);
return;
} //外层线段树查询
il void Query(RG int x,RG int l,RG int r,RG int p1,RG int p2){
if (rt[x]) query(rt[x],,n+,p2); if (l==r) return;
p1<=mid?Query(lson,l,mid,p1,p2):Query(rson,mid+,r,p1,p2);
return;
} il void work(){
n=gi(),m=gi(); RG int type,l,r;
for (RG int i=;i<=m;++i){
type=gi(),l=gi(),r=gi();
if (type==){
RG ll p=qpow(r-l+,rhl-);
//一个点被修改的概率为p=1/(r-l+1)
//l!=1的情况
if (l>) Update(,,n,,l-,l,r,(-p+rhl)%rhl);
if (r<n) Update(,,n,l,r,r+,n,(-p+rhl)%rhl);
//[1,l-1]与[l,r]和[l,r]与[r+1,n]之间,修改次数相等的概率为(1-p)
RG ll pp=p<<; if (pp>=rhl) pp-=rhl;
Update(,,n,l,r,l,r,(-pp+rhl)%rhl);
//[l+r]与[l+r]之间,修改次数相等的概率为1-2*p
//l==1的情况
Update(,,n,,,,l-,);
Update(,,n,,,r+,n+,);
//[0,l-1]和[r+1,n+1]这两个区间,前缀和等于后缀和的概率为0
Update(,,n,,,l,r,p);
//[l,r]这个区间,前缀和等于后缀和的概率为p
} else{
ans=,Query(,,n,l-,r);
//查询操作,即查询(l-1,r)修改次数相等的概率
//若l==1,即查询r的前缀和等于后缀和的概率
printf("%lld\n",ans);
}
}
return;
} int main(){
File("bit");
work();
return ;
}

bzoj4785 [Zjoi2017]树状数组的更多相关文章

  1. [BZOJ4785][ZJOI2017]树状数组(概率+二维线段树)

    4785: [Zjoi2017]树状数组 Time Limit: 40 Sec  Memory Limit: 512 MBSubmit: 297  Solved: 195[Submit][Status ...

  2. BZOJ4785 ZJOI2017树状数组(概率+二维线段树)

    可以发现这个写挂的树状数组求的是后缀和.find(r)-find(l-1)在模2意义下实际上查询的是l-1~r-1的和,而本来要查询的是l~r的和.也就是说,若结果正确,则a[l-1]=a[r](mo ...

  3. BZOJ4785 [Zjoi2017]树状数组 【二维线段树 + 标记永久化】

    题目链接 BZOJ4785 题解 肝了一个下午QAQ没写过二维线段树还是很难受 首先题目中的树状数组实际维护的是后缀和,这一点凭分析或经验或手模观察可以得出 在\(\mod 2\)意义下,我们实际求出 ...

  4. bzoj4785:[ZJOI2017]树状数组:二维线段树

    分析: "如果你对树状数组比较熟悉,不难发现可怜求的是后缀和" 设数列为\(A\),那么可怜求的就是\(A_{l-1}\)到\(A_{r-1}\)的和(即\(l-1\)的后缀减\( ...

  5. 【BZOJ4785】[Zjoi2017]树状数组 树套树(二维线段树)

    [BZOJ4785][Zjoi2017]树状数组 Description 漆黑的晚上,九条可怜躺在床上辗转反侧.难以入眠的她想起了若干年前她的一次悲惨的OI 比赛经历.那是一道基础的树状数组题.给出一 ...

  6. 【bzoj4785】[Zjoi2017]树状数组 线段树套线段树

    题目描述 漆黑的晚上,九条可怜躺在床上辗转反侧.难以入眠的她想起了若干年前她的一次悲惨的OI 比赛经历.那是一道基础的树状数组题.给出一个长度为 n 的数组 A,初始值都为 0,接下来进行 m 次操作 ...

  7. [ZJOI2017]树状数组

    Description 漆黑的晚上,九条可怜躺在床上辗转反侧.难以入眠的她想起了若干年前她的一次悲惨的OI 比赛经历.那是一道 基础的树状数组题.给出一个长度为 n 的数组 A,初始值都为 0,接下来 ...

  8. LOJ2251 [ZJOI2017] 树状数组【线段树】【树套树】

    题目分析: 对于一个$add$操作,它的特点是与树状数组的查询相同,会给$1$到它自己产生影响,而$query$操作则会途径所有包含它的树状数组点.现在$add$操作具有前向性(不会影响之后的点).所 ...

  9. 【uoj291】 ZJOI2017—树状数组

    http://uoj.ac/problem/291 (题目链接) 题意 一个写错的树状数组有多大的概率与正常树状数组得出的答案一样. Solution 可以发现这个树状数组维护的是后缀和. 所以二维线 ...

随机推荐

  1. Android 一个改善的okHttp封装库

    膜拜一下~ 转载请标明出处: http://blog.csdn.net/lmj623565791/article/details/49734867: 本文出自:[张鸿洋的博客] 一.概述 之前写了篇A ...

  2. log4go 的 Bug Fix 及 增强

    log4go 一直存在关闭时丢失记录的问题.网络上很多人怀疑是Flush.经过跟踪发现只要在 Close() 函数中增加以下语句: for i := 10; i > 0 && l ...

  3. netflix zuul-simple-webapp.war在tomcat下启动

    按照netflix 在github 的wiki的文档使用 gradlew jettyRun 可以启动jetty来进行测试. 在本地build war 以后,我放在tomcat 运行的时候,却不可以运行 ...

  4. UML软件方法大纲

    利用周末的时间读了潘加宇的<软件方法(上)>,希望梳理清楚UML的知识脉络: 工作流 子流程 内容 备注 建模和uml   利润=需求-设计   愿景   缺乏清晰.共享的愿景往往是项目失 ...

  5. Apache网页的缓存时间

    配置网页缓存时间概述 通过mod_expires模块配置Apache,使网页能在客户端浏览器缓存一段时间,以避免重复请求,减轻服务端工作压力. 启用mod_expires模块后,会自动生成页面头部信息 ...

  6. IIS 部署ASP.Net, WebAPI, Restful API, PUT/DELETE 报405错解决办法, webapi method not allowed 405

    WebDAV 是超文本传输协议 (HTTP) 的一组扩展,为 Internet 上计算机之间的编辑和文件管理提供了标准.利用这个协议用户可以通过Web进行远程的基本文件操作,如拷贝.移动.删除等.在I ...

  7. 光环国际PRINCE2培训费是多少?

    光环国际学习PRINCE2新活动 第一重好礼:获得商务背包一个 第二重好礼:获得600元学习代金券一张 第三重好礼:获得高清流程图一张 活动时间:2017年3月20日-3月31日 PRINCE2 (P ...

  8. 学习Jammendo代码的心路历程(二)ViewFlipper数据的填充

    打开Jammendo进入到首页之后,会看到这样一个界面.可以看到下左效果,我们可以看到,他是上部分的ViewFlipper模块和下半部分的listview模块构成的,今天就简单的说一下Jammendo ...

  9. 02.PHP7.x编译详解

    #php7编译安装安装 ``` useradd -M -s /sbin/nologin www yum -y install openssl-devel bzip2-devel curl-devel ...

  10. Realm数据持久化方案的简单介绍和使用(二)

    接上篇... 4. 可空属性&默认值&忽略属性 默认情况下, 属性值可空, 如果强制要求某个属性非空, 可以使用如下方法: 遵循协议方法 + (NSArray *)requiredPr ...