0_Simple__fp16ScalarProduct
▶ 使用cuda内置无符号整数结构(__half2)及其汇编函数,计算两个向量的内积。
▶ 源代码
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include "cuda_fp16.h"
#include "helper_cuda.h" // 将数组 v 进行二分规约加法,使用 __forceinline__ 强制内联
__forceinline__ __device__ void reduceInShared(half2 * const v)
{
if (threadIdx.x < )
v[threadIdx.x] = __hadd2(v[threadIdx.x], v[threadIdx.x + ]);
__syncthreads();
for (int i = ; i > ; i /= )
{
if (threadIdx.x < )
v[threadIdx.x] = __hadd2(v[threadIdx.x], v[threadIdx.x + i]);
__syncthreads();
}
} // 将数组 a 与 b 相加后进行规约加法,输入还包括指向结果的指针 h_result 及数组大小
__global__ void scalarProductKernel(half2 const * const a, half2 const * const b, float * const h_result, size_t const size)
{
__shared__ half2 shArray[];
const int stride = gridDim.x * blockDim.x; shArray[threadIdx.x] = __float2half2_rn(.f); // 浮点数转无符号整数,这里相当于初始化为 0 half2 value = __float2half2_rn(.f);
for (int i = threadIdx.x + blockDim.x + blockIdx.x; i < size; i += stride) // 半精度混合乘加,value = a[i] * b[i] + value
value = __hfma2(a[i], b[i], value);
shArray[threadIdx.x] = value;
__syncthreads(); reduceInShared(shArray); // 规约得 a 和 b 的内积,因为使用了内联,共享内存指针可以传入 if (threadIdx.x == ) // 0 号线程负责写入结果
{
half2 result = shArray[];
h_result[blockIdx.x] = (float)(__low2float(result) + __high2float(result));
}
} void generateInput(half2 * a, size_t size) // 生成随机数组
{
for (size_t i = ; i < size; ++i)
{
unsigned temp = rand();
temp &= 0x83FF83FF; // 2214560767(10), 10000011111111111000001111111111(2)
temp |= 0x3C003C00; // 1006648320(10), 111100000000000011110000000000(2)
a[i] = *(half2*)&temp;
}
} int main(int argc, char *argv[])
{
srand(time(NULL));
const int blocks = , threads = ;
size_t size = blocks * threads * ; int devID = ;
cudaDeviceProp devProp;
cudaGetDeviceProperties(&devProp, devID);
if (devProp.major < || (devProp.major == && devProp.minor < ))
{
printf("required GPU with compute SM 5.3 or higher.\n");
return EXIT_WAIVED;
} half2 *h_vec[], *d_vec[];
float *h_result, *d_result;
for (int i = ; i < ; ++i)
{
cudaMallocHost((void**)&h_vec[i], size * sizeof*h_vec[i]);
cudaMalloc((void**)&d_vec[i], size * sizeof*d_vec[i]);
}
cudaMallocHost((void**)&h_result, blocks * sizeof*h_result);
cudaMalloc((void**)&d_result, blocks * sizeof*d_result);
for (int i = ; i < ; ++i)
{
generateInput(h_vec[i], size);
cudaMemcpy(d_vec[i], h_vec[i], size * sizeof*h_vec[i], cudaMemcpyHostToDevice);
}
scalarProductKernel << <blocks, threads >> >(d_vec[], d_vec[], d_result, size);
cudaMemcpy(h_result, d_result, blocks * sizeof * h_result, cudaMemcpyDeviceToHost);
cudaDeviceSynchronize(); float result = ;
for (int i = ; i < blocks; ++i)
result += h_result[i];
printf("Result: %f \n", result); for (int i = ; i < ; ++i)
{
cudaFree(d_vec[i]);
cudaFreeHost(h_vec[i]);
}
cudaFree(d_result);
cudaFreeHost(h_result);
getchar();
return EXIT_SUCCESS;
}
● 输出结果
GPU Device : "GeForce GTX 1070" with compute capability 6.1 Result: 853856.000000
▶ 涨姿势
● CUDA 无符号半精度整数,就是用 unsigned short 对齐到 2 Byte 来封装的
typedef struct __align__() { unsigned short x; } __half;
typedef struct __align__() { unsigned int x; } __half2;
#ifndef CUDA_NO_HALF
typedef __half half;
typedef __half2 half2;
#endif
● 关于 __inline__ 和 __forceinline__
参考stackoverflow。https://stackoverflow.com/questions/19897803/forceinline-effect-at-cuda-c-device-functions
与C中__forceinline__类似,忽略编译器的建议,强制实现内联函数。如果函数只调用累次那么优化没有效果,但是如果调用了多次(如内联函数出现在循环中),则会产生明显的提升。另外,在递归中一般不用。
● 关于 __CUDACC__ 和 __CUDA_ARCH__
■ 参考 stackoverflow【https://stackoverflow.com/questions/8796369/cuda-and-nvcc-using-the-preprocessor-to-choose-between-float-or-double】
■ __CUDACC__ 使用 nvcc 进行编译时有定义。
■ __CUDA_ARCH__ 编译主机代码时无定义(无论是否使用 nvcc);编译设备代码时有定义,且值等于编译命令指定的计算能力号。
■ 范例代码:(为了方便查看,使用了缩进)
#ifdef __CUDACC__
#warning using nvcc template <typename T> // 一般的核函数
__global__ void add(T *x, T *y, T *z)
{
int idx = threadIdx.x + blockDim.x * blockIdx.x;
z[idx] = x[idx] + y[idx];
} #ifdef __CUDA_ARCH__
#warning device code trajectory
#if __CUDA_ARCH__ > 120
#warning compiling with datatype double
template void add<double>(double *, double *, double *);
#else
#warning compiling with datatype float
template void add<float>(float *, float *, float *);
#endif
#else
#warning nvcc host code trajectory
#endif
#else
#warning non - nvcc code trajectory
#endif
■ 编译及输出结果
$ ln -s cudaarch.cu cudaarch.cc
$ gcc -c cudaarch.cc -o cudaarch.o
cudaarch.cc::: warning: #warning non-nvcc code trajectory $ nvcc -arch=sm_11 -Xptxas="-v" -c cudaarch.cu -o cudaarch.cu.o
cudaarch.cu::: warning: #warning using nvcc
cudaarch.cu::: warning: #warning device code trajectory
cudaarch.cu::: warning: #warning compiling with datatype float
cudaarch.cu::: warning: #warning using nvcc
cudaarch.cu::: warning: #warning nvcc host code trajectory
ptxas info : Compiling entry function '_Z3addIfEvPT_S1_S1_' for 'sm_11'
ptxas info : Used registers, + bytes smem $ nvcc -arch=sm_20 -Xptxas="-v" -c cudaarch.cu -o cudaarch.cu.o
cudaarch.cu::: warning: #warning using nvcc
cudaarch.cu::: warning: #warning device code trajectory
cudaarch.cu::: warning: #warning compiling with datatype double
cudaarch.cu::: warning: #warning using nvcc
cudaarch.cu::: warning: #warning nvcc host code trajectory
ptxas info : Compiling entry function '_Z3addIdEvPT_S1_S1_' for 'sm_20'
ptxas info : Used registers, bytes cmem[]
● 用到的汇编函数
// 表明主机和设备共有代码
#define __CUDA_FP16_DECL__ __host__ __device__ // 浮点数转无符号整数
__CUDA_FP16_DECL__ __half2 __float2half2_rn(const float f)
{
__half2 val;
asm("{.reg .f16 low;\n"
" cvt.rn.f16.f32 low, %1;\n"
" mov.b32 %0, {low,low};}\n" : "=r"(val.x) : "f"(f));
return val;
} // 计算无符号整数 a + b
#define BINARY_OP_HALF2_MACRO(name) \
do \
{ \
__half2 val; \
asm("{"#name".f16x2 %0,%1,%2;\n}" :"=r"(val.x) : "r"(a.x), "r"(b.x)); \
return val; \
} \
while(); __CUDA_FP16_DECL__ __half2 __hadd2(const __half2 a, const __half2 b)
{
BINARY_OP_HALF2_MACRO(add);
} // 计算无符号整数 a * b + c
#define TERNARY_OP_HALF2_MACRO(name) \
do \
{ \
__half2 val; \
asm("{"#name".f16x2 %0,%1,%2,%3;\n}" : "=r"(val.x) : "r"(a.x), "r"(b.x), "r"(c.x)); \
return val; \
} \
while(); __CUDA_FP16_DECL__ __half2 __hfma2(const __half2 a, const __half2 b, const __half2 c)
{
TERNARY_OP_HALF2_MACRO(fma.rn);
} // 将无符号整数的低 2 字节转化为浮点数
__CUDA_FP16_DECL__ float __low2float(const __half2 l)
{
float val;
asm("{.reg .f16 low,high;\n"
" mov.b32 {low,high},%1;\n"
" cvt.f32.f16 %0, low;}\n" : "=f"(val) : "r"(l.x));
return val;
} // 将无符号整数的高 2 字节转化为浮点数
__CUDA_FP16_DECL__ float __high2float(const __half2 l)
{
float val;
asm("{.reg .f16 low,high;\n"
" mov.b32 {low,high},%1;\n"
" cvt.f32.f16 %0, high;}\n" : "=f"(val) : "r"(l.x));
return val;
}
0_Simple__fp16ScalarProduct的更多相关文章
随机推荐
- Linux 内核模块程序结构
1.内核加载函数 即我们常说的内核入口函数,当内核被加载的时候调用,在内核入口函数中多进行设备的注册和初始化,其中最常用的莫过于module_init().insmod xxx.ko的时候调用. 通常 ...
- js 倒计时(服务器时间同步)
首先说一下,为什么要服务器时间同步, 因为服务器时间和本地电脑时间存在一定的时间差.有些对时效性要求非常高的应用,例如时时彩开奖,是不能容忍这种时间差存在的. 方案1:每次倒计时去服务端请求时间 // ...
- Spring+SpringMVC+MyBatis整合进阶篇(四)RESTful实战(前端代码修改)
前言 前文<RESTful API实战笔记(接口设计及Java后端实现)>中介绍了RESTful中后端开发的实现,主要是接口地址修改和返回数据的格式及规范的修改,本文则简单介绍一下,RES ...
- 常用git指令
git checkout -b newBranchName //与当前分支内容相同! git checkout -b 本地分支 origin xxx//远程分支 在本地新建一个分支,并把远程分支的代码 ...
- LinkedHashMap 源码解析
概述: LinkedHashMap实现Map继承HashMap,基于Map的哈希表和链该列表实现,具有可预知的迭代顺序. LinedHashMap维护着一个运行于所有条目的双重链表结构,该链表定义了迭 ...
- ionic2+Angular2:套接口明细步骤,以登录功能为例
1.在app.module.ts引用HttpModul,并在imports内引用.截图如下: 2.在src目录下新建http服务.命令行:ionic g provider HttpService ...
- 机器学习实战K-近邻算法
今天开始学习机器学习,第一章是K-近邻算法,有不对的地方请指正 大概总结一下近邻算法写分类器步骤: 1. 计算测试数据与已知数据的特征值的距离,离得越近越相似 2. 取距离最近的K个已知数据的所属分类 ...
- java关键字中文对比
abstract 摘要|抽象assert 声称boolean 布尔break 中断byte 字节case 实例catch 捕捉char 烧焦class 类const 常量continue 持续defa ...
- 实现径向变换用于样本增强《Training Neural Networks with Very Little Data-A Draft》
背景: 做大规模机器学习算法,特别是神经网络最怕什么--没有数据!!没有数据意味着,机器学不会,人工不智能!通常使用样本增强来扩充数据一直都是解决这个问题的一个好方法. 最近的一篇论文<Trai ...
- HDU1024 DP的优化 最大M子段和问题
Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...