0_Simple__fp16ScalarProduct
▶ 使用cuda内置无符号整数结构(__half2)及其汇编函数,计算两个向量的内积。
▶ 源代码
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include "cuda_fp16.h"
#include "helper_cuda.h" // 将数组 v 进行二分规约加法,使用 __forceinline__ 强制内联
__forceinline__ __device__ void reduceInShared(half2 * const v)
{
if (threadIdx.x < )
v[threadIdx.x] = __hadd2(v[threadIdx.x], v[threadIdx.x + ]);
__syncthreads();
for (int i = ; i > ; i /= )
{
if (threadIdx.x < )
v[threadIdx.x] = __hadd2(v[threadIdx.x], v[threadIdx.x + i]);
__syncthreads();
}
} // 将数组 a 与 b 相加后进行规约加法,输入还包括指向结果的指针 h_result 及数组大小
__global__ void scalarProductKernel(half2 const * const a, half2 const * const b, float * const h_result, size_t const size)
{
__shared__ half2 shArray[];
const int stride = gridDim.x * blockDim.x; shArray[threadIdx.x] = __float2half2_rn(.f); // 浮点数转无符号整数,这里相当于初始化为 0 half2 value = __float2half2_rn(.f);
for (int i = threadIdx.x + blockDim.x + blockIdx.x; i < size; i += stride) // 半精度混合乘加,value = a[i] * b[i] + value
value = __hfma2(a[i], b[i], value);
shArray[threadIdx.x] = value;
__syncthreads(); reduceInShared(shArray); // 规约得 a 和 b 的内积,因为使用了内联,共享内存指针可以传入 if (threadIdx.x == ) // 0 号线程负责写入结果
{
half2 result = shArray[];
h_result[blockIdx.x] = (float)(__low2float(result) + __high2float(result));
}
} void generateInput(half2 * a, size_t size) // 生成随机数组
{
for (size_t i = ; i < size; ++i)
{
unsigned temp = rand();
temp &= 0x83FF83FF; // 2214560767(10), 10000011111111111000001111111111(2)
temp |= 0x3C003C00; // 1006648320(10), 111100000000000011110000000000(2)
a[i] = *(half2*)&temp;
}
} int main(int argc, char *argv[])
{
srand(time(NULL));
const int blocks = , threads = ;
size_t size = blocks * threads * ; int devID = ;
cudaDeviceProp devProp;
cudaGetDeviceProperties(&devProp, devID);
if (devProp.major < || (devProp.major == && devProp.minor < ))
{
printf("required GPU with compute SM 5.3 or higher.\n");
return EXIT_WAIVED;
} half2 *h_vec[], *d_vec[];
float *h_result, *d_result;
for (int i = ; i < ; ++i)
{
cudaMallocHost((void**)&h_vec[i], size * sizeof*h_vec[i]);
cudaMalloc((void**)&d_vec[i], size * sizeof*d_vec[i]);
}
cudaMallocHost((void**)&h_result, blocks * sizeof*h_result);
cudaMalloc((void**)&d_result, blocks * sizeof*d_result);
for (int i = ; i < ; ++i)
{
generateInput(h_vec[i], size);
cudaMemcpy(d_vec[i], h_vec[i], size * sizeof*h_vec[i], cudaMemcpyHostToDevice);
}
scalarProductKernel << <blocks, threads >> >(d_vec[], d_vec[], d_result, size);
cudaMemcpy(h_result, d_result, blocks * sizeof * h_result, cudaMemcpyDeviceToHost);
cudaDeviceSynchronize(); float result = ;
for (int i = ; i < blocks; ++i)
result += h_result[i];
printf("Result: %f \n", result); for (int i = ; i < ; ++i)
{
cudaFree(d_vec[i]);
cudaFreeHost(h_vec[i]);
}
cudaFree(d_result);
cudaFreeHost(h_result);
getchar();
return EXIT_SUCCESS;
}
● 输出结果
GPU Device : "GeForce GTX 1070" with compute capability 6.1 Result: 853856.000000
▶ 涨姿势
● CUDA 无符号半精度整数,就是用 unsigned short 对齐到 2 Byte 来封装的
typedef struct __align__() { unsigned short x; } __half;
typedef struct __align__() { unsigned int x; } __half2;
#ifndef CUDA_NO_HALF
typedef __half half;
typedef __half2 half2;
#endif
● 关于 __inline__ 和 __forceinline__
参考stackoverflow。https://stackoverflow.com/questions/19897803/forceinline-effect-at-cuda-c-device-functions
与C中__forceinline__类似,忽略编译器的建议,强制实现内联函数。如果函数只调用累次那么优化没有效果,但是如果调用了多次(如内联函数出现在循环中),则会产生明显的提升。另外,在递归中一般不用。
● 关于 __CUDACC__ 和 __CUDA_ARCH__
■ 参考 stackoverflow【https://stackoverflow.com/questions/8796369/cuda-and-nvcc-using-the-preprocessor-to-choose-between-float-or-double】
■ __CUDACC__ 使用 nvcc 进行编译时有定义。
■ __CUDA_ARCH__ 编译主机代码时无定义(无论是否使用 nvcc);编译设备代码时有定义,且值等于编译命令指定的计算能力号。
■ 范例代码:(为了方便查看,使用了缩进)
#ifdef __CUDACC__
#warning using nvcc template <typename T> // 一般的核函数
__global__ void add(T *x, T *y, T *z)
{
int idx = threadIdx.x + blockDim.x * blockIdx.x;
z[idx] = x[idx] + y[idx];
} #ifdef __CUDA_ARCH__
#warning device code trajectory
#if __CUDA_ARCH__ > 120
#warning compiling with datatype double
template void add<double>(double *, double *, double *);
#else
#warning compiling with datatype float
template void add<float>(float *, float *, float *);
#endif
#else
#warning nvcc host code trajectory
#endif
#else
#warning non - nvcc code trajectory
#endif
■ 编译及输出结果
$ ln -s cudaarch.cu cudaarch.cc
$ gcc -c cudaarch.cc -o cudaarch.o
cudaarch.cc::: warning: #warning non-nvcc code trajectory $ nvcc -arch=sm_11 -Xptxas="-v" -c cudaarch.cu -o cudaarch.cu.o
cudaarch.cu::: warning: #warning using nvcc
cudaarch.cu::: warning: #warning device code trajectory
cudaarch.cu::: warning: #warning compiling with datatype float
cudaarch.cu::: warning: #warning using nvcc
cudaarch.cu::: warning: #warning nvcc host code trajectory
ptxas info : Compiling entry function '_Z3addIfEvPT_S1_S1_' for 'sm_11'
ptxas info : Used registers, + bytes smem $ nvcc -arch=sm_20 -Xptxas="-v" -c cudaarch.cu -o cudaarch.cu.o
cudaarch.cu::: warning: #warning using nvcc
cudaarch.cu::: warning: #warning device code trajectory
cudaarch.cu::: warning: #warning compiling with datatype double
cudaarch.cu::: warning: #warning using nvcc
cudaarch.cu::: warning: #warning nvcc host code trajectory
ptxas info : Compiling entry function '_Z3addIdEvPT_S1_S1_' for 'sm_20'
ptxas info : Used registers, bytes cmem[]
● 用到的汇编函数
// 表明主机和设备共有代码
#define __CUDA_FP16_DECL__ __host__ __device__ // 浮点数转无符号整数
__CUDA_FP16_DECL__ __half2 __float2half2_rn(const float f)
{
__half2 val;
asm("{.reg .f16 low;\n"
" cvt.rn.f16.f32 low, %1;\n"
" mov.b32 %0, {low,low};}\n" : "=r"(val.x) : "f"(f));
return val;
} // 计算无符号整数 a + b
#define BINARY_OP_HALF2_MACRO(name) \
do \
{ \
__half2 val; \
asm("{"#name".f16x2 %0,%1,%2;\n}" :"=r"(val.x) : "r"(a.x), "r"(b.x)); \
return val; \
} \
while(); __CUDA_FP16_DECL__ __half2 __hadd2(const __half2 a, const __half2 b)
{
BINARY_OP_HALF2_MACRO(add);
} // 计算无符号整数 a * b + c
#define TERNARY_OP_HALF2_MACRO(name) \
do \
{ \
__half2 val; \
asm("{"#name".f16x2 %0,%1,%2,%3;\n}" : "=r"(val.x) : "r"(a.x), "r"(b.x), "r"(c.x)); \
return val; \
} \
while(); __CUDA_FP16_DECL__ __half2 __hfma2(const __half2 a, const __half2 b, const __half2 c)
{
TERNARY_OP_HALF2_MACRO(fma.rn);
} // 将无符号整数的低 2 字节转化为浮点数
__CUDA_FP16_DECL__ float __low2float(const __half2 l)
{
float val;
asm("{.reg .f16 low,high;\n"
" mov.b32 {low,high},%1;\n"
" cvt.f32.f16 %0, low;}\n" : "=f"(val) : "r"(l.x));
return val;
} // 将无符号整数的高 2 字节转化为浮点数
__CUDA_FP16_DECL__ float __high2float(const __half2 l)
{
float val;
asm("{.reg .f16 low,high;\n"
" mov.b32 {low,high},%1;\n"
" cvt.f32.f16 %0, high;}\n" : "=f"(val) : "r"(l.x));
return val;
}
0_Simple__fp16ScalarProduct的更多相关文章
随机推荐
- 深入理解计算机系统chapter3
栈在处理过程调用中起到至关重要的作用,栈向下增长,栈顶元素的地址是所有栈中元素最小的.栈指针%esp保存着栈顶元素的地址 控制: 重点: 基于条件数据传送的代码比基于条件控制转移(预测错误惩罚比较高) ...
- 强大的桌面用 PDF 重排工具:K2pdfopt 简明教程
用 Kindle 阅读 PDF 一直以来都遭到小伙伴们的无限吐槽,在那 Kindle 还能越狱的时代,我们有 Koreader 之类优秀的 Kindle 第三方插件实现 PDF 文档的实时重排,但是随 ...
- UNREFERENCED_PARAMETER
作用:告诉编译器,已经使用了该变量,不必检测警告! 在VC编译器下,如果您用最高级别进行编译,编译器就会很苛刻地指出您的非常细小的警告.当你生命了一个变量,而没有使用时,编译器就会报警告:" ...
- Java子线程中的异常处理(通用)
在普通的单线程程序中,捕获异常只需要通过try ... catch ... finally ...代码块就可以了.那么,在并发情况下,比如在父线程中启动了子线程,如何正确捕获子线程中的异常,从而进行相 ...
- NOIP2017SummerTraining0726
三道比较简单的题,还以为是八校考试的题目,但是并不是,无语了,第三题其实看了挺久的,一看到图,就想到了二分图,网络流之类的算法,但是尽力往这个方向想了好久都没什么思路, 最后从简单入手,然而没什么结果 ...
- php中常用的字符串长度函数strlen()与mb_strlen()实例解释
int strlen ( string $string ) int strlen ( string $string ) 获取给定字符串的[字节]长度 成功则返回字符串$string的长度,如果$s ...
- node-Telnet
什么是Telnet(window系统) 使用Telnet工具作为客户端对创建的TCP服务器进行会话交流时遇到的问题做一个简单的记录.希望可以帮助到一些同学. 这里看一下百度词条的解释 Telnet协议 ...
- zoj2818 Root of the Problem 简单数学 开方
Root of the Problem Time Limit: 2 Seconds Memory Limit: 65536 KB Given positive integers B and ...
- IBM Minus One 简单字符处理
IBM Minus One Time Limit: 2 Seconds Memory Limit: 65536 KB You may have heard of the book '2001 ...
- menu菜单项和menubutton菜单按钮的结合使用
<!--创建需要显示的菜单按钮(munebutton),menu指定的是菜单项--><a href="javascript:void(0)" id="m ...