Statement

对一张简单无向图进行 \(k\) 染色,满足对于每条边的两个端点颜色不同,求方案数。

\(n,m\leq 30\)。

Solution

无向图 \(k\) 染色问题,很经典的问题。

这道题的突破口是 \(n,m\) 均不大,所以 \(m-n\) 不会很大,这提示我们使用广义串并联图方法

具体地,根据 EI 和洛谷讨论区里的说法,我们套路性地考虑对于每条边设 \(DP\),\(f_i\) 表示如果这条边两个端点被染了不同的颜色,这条边内部被缩略的结构中有多少种染色方案。\(g_i\) 表示如果这两条边端点被染了相同颜色的方案数。

那么对于原图中的边显然有 \(f_{u,v}=1\) 和 \(g_{u,v}=0\)。

广义串并联图方法的套路是对每条边设置 \(DP\) 后删一度点直接把贡献乘入答案,缩二度点和叠重边更新 \(DP\) 值。

下述推导来自讨论区:

对于删一度点,将答案乘上 \((k-1)f_u+g_u\),表示枚举删的这个点的颜色。

对于缩二度点,\(f_e=f_u f_v(k-2)+g_u f_v+f_u g_v,g_e=f_u f_v(k-1)+g_u g_v\),表示枚举中间那个点的颜色并分讨。

对于叠重边,\(f_e=f_u f_v,g_e=g_u g_v\),表示乘法原理。

现在图中的点满足了 \(n\leq \frac{2m}{3}\) 即 \(n\leq 20\)。

考虑对每一个颜色设一个集合幂级数,答案就是这些集合幂级数子集卷积的结果。

具体地,我们先假设所有边都取到了 \(f\) 的贡献,然后如果有一个颜色的集合包含了这条边的两个端点,就需要乘上一个 \(\frac{g}{f}\)。容易发现 \(f\) 总是非 \(0\) 的,所以一定存在逆元。这些贡献容易一遍 \(\text{FWT}\) 计算答案。

现在我们需要快速求集合幂级数 \(F\) 的 \(k\) 次方。然而 \(n\) 有 \(20\) 级别,所以需要 \(\ln\) 再 \(\exp\) 回去。复杂度是 \(O(2^n n^2)\) 的。

\(\ln,\exp\) 直接对占位幂级数 \(O(n^2)\) 求就可以了。

式子:

\(\ln:g_n=f_n-\frac{1}{n}\sum_{i=1}^{n-1} g_i i f_{n-i}\)。需要保证常数项为 \(1\)。

\(\exp:g_n=\frac{1}{n}\sum_{i=1}^{n} f_i i g_{n-i}\)。需要保证常数项为 \(0\)。

#include <cstdio>
using namespace std;
int read(){
char c=getchar();int x=0;
while(c<48||c>57) c=getchar();
do x=(x<<1)+(x<<3)+(c^48),c=getchar();
while(c>=48&&c<=57);
return x;
}
const int N=33,P=998244353;
typedef long long ll;
int qp(int a,int b=P-2){
int res=1;
while(b){
if(b&1) res=(ll)res*a%P;
a=(ll)a*a%P;b>>=1;
}
return res;
}
int n,m,k,res,cnt;
int f[N][N],g[N][N];
bool del[N];
int deg[N];
int F[1<<20];
int inv[21],id[N];
namespace Subset{
int n;
int f[21][1<<20];
int g[21][1<<20];
void inc(int &x,int v){if((x+=v)>=P) x-=P;}
void dec(int &x,int v){if((x-=v)<0) x+=P;}
void FWT(int *arr){
for(int i=1;i<(1<<n);i<<=1)
for(int j=0;j<(1<<n);j+=(i<<1))
for(int k=j;k<(j|i);++k) inc(arr[k|i],arr[k]);
}
void IFWT(int *arr){
for(int i=1;i<(1<<n);i<<=1)
for(int j=0;j<(1<<n);j+=(i<<1))
for(int k=j;k<(j|i);++k) dec(arr[k|i],arr[k]);
}
void getln(int *arr){
for(int i=0;i<=n;++i)
for(int s=0;s<(1<<n);++s) f[i][s]=g[i][s]=0;
for(int s=0;s<(1<<n);++s) f[__builtin_popcount(s)][s]=arr[s];
for(int i=0;i<=n;++i) FWT(f[i]);
for(int i=1;i<=n;++i){
for(int j=1;j<i;++j)
for(int s=0;s<(1<<n);++s)
dec(g[i][s],(ll)g[j][s]*j%P*f[i-j][s]%P);
for(int s=0;s<(1<<n);++s)
g[i][s]=((ll)g[i][s]*inv[i]+f[i][s])%P;
}
for(int i=0;i<=n;++i) IFWT(g[i]);
for(int s=0;s<(1<<n);++s) arr[s]=g[__builtin_popcount(s)][s];
}
void getexp(int *arr){
for(int i=0;i<=n;++i)
for(int s=0;s<(1<<n);++s) f[i][s]=g[i][s]=0;
for(int s=0;s<(1<<n);++s) f[__builtin_popcount(s)][s]=arr[s];
for(int i=0;i<=n;++i) FWT(f[i]);
for(int s=0;s<(1<<n);++s) g[0][s]=1;
for(int i=1;i<=n;++i){
for(int j=1;j<=i;++j)
for(int s=0;s<(1<<n);++s)
inc(g[i][s],(ll)f[j][s]*j%P*g[i-j][s]%P);
for(int s=0;s<(1<<n);++s)
g[i][s]=(ll)g[i][s]*inv[i]%P;
}
for(int i=0;i<=n;++i) IFWT(g[i]);
for(int s=0;s<(1<<n);++s) arr[s]=g[__builtin_popcount(s)][s];
}
}
int main(){
n=read();m=read();k=read();res=1;
for(int i=1;i<=m;++i){
int u=read(),v=read();
f[u][v]=f[v][u]=1;
++deg[u];++deg[v];
}
bool fl=1;
while(fl){
fl=0;
for(int u=1;u<=n;++u)
if(deg[u]==1){
fl=1;
del[u]=1;
for(int v=1;v<=n;++v)
if(f[u][v]){
--deg[u];--deg[v];
res=((ll)f[u][v]*(k-1)+g[u][v])%P*res%P;
f[u][v]=f[v][u]=0;
g[u][v]=g[v][u]=0;
}
break;
}
if(fl) continue;
for(int u=1;u<=n;++u)
if(deg[u]==2){
fl=1;
int x=0,y=0;
for(int v=1;v<=n;++v)
if(f[u][v]){if(x) y=v;else x=v;}
deg[u]=0;del[u]=1;
int ff=(ll)f[u][x]*f[u][y]%P;
int nf=((ll)ff*(k-2)+(ll)g[u][x]*f[u][y]+(ll)f[u][x]*g[u][y])%P;
int ng=((ll)ff*(k-1)+(ll)g[u][x]*g[u][y])%P;
f[u][x]=f[x][u]=f[u][y]=f[y][u]=0;
g[u][x]=g[x][u]=g[u][y]=g[y][u]=0;
if(!f[x][y]&&!f[y][x]){
f[x][y]=f[y][x]=nf;
g[x][y]=g[y][x]=ng;
}
else{
f[y][x]=f[x][y]=(ll)f[x][y]*nf%P;
g[y][x]=g[x][y]=(ll)g[x][y]*ng%P;
--deg[x];--deg[y];
}
break;
}
}
for(int i=1;i<=n;++i) if(!del[i]&&!deg[i]) res=(ll)res*k%P,del[i]=1;
for(int i=1;i<=n;++i)
if(!del[i]) id[i]=cnt++;
if(cnt){
inv[1]=1;Subset::n=cnt;
for(int i=2;i<=cnt;++i) inv[i]=(ll)inv[P%i]*(P-P/i)%P;
for(int i=0;i<(1<<cnt);++i) F[i]=1;
for(int i=1;i<=n;++i){
if(del[i]) continue;
for(int j=1;j<i;++j){
if(del[j]) continue;
if(f[i][j]){
res=(ll)res*f[i][j]%P;
int ver=(1<<id[i])|(1<<id[j]);
F[ver]=(ll)F[ver]*qp(f[i][j])%P*g[i][j]%P;
}
}
}
for(int i=1;i<(1<<cnt);i<<=1)
for(int j=0;j<(1<<cnt);j+=(i<<1))
for(int k=j;k<(j|i);++k) F[k|i]=(ll)F[k|i]*F[k]%P;
Subset::getln(F);
for(int i=0;i<(1<<cnt);++i) F[i]=(ll)F[i]*k%P;
Subset::getexp(F);
res=(ll)res*F[(1<<cnt)-1]%P;
}
printf("%d\n",res);
return 0;
}

ABC294Ex K-Coloring的更多相关文章

  1. PAT 甲级 1154 Vertex Coloring

    https://pintia.cn/problem-sets/994805342720868352/problems/1071785301894295552 A proper vertex color ...

  2. pat甲级 1154 Vertex Coloring (25 分)

    A proper vertex coloring is a labeling of the graph's vertices with colors such that no two vertices ...

  3. PAT_A1154#Vertex Coloring

    Source: PAT A 1154 Vertex Coloring (25 分) Description: A proper vertex coloring is a labeling of the ...

  4. PAT Advanced 1154 Vertex Coloring (25 分)

    A proper vertex coloring is a labeling of the graph's vertices with colors such that no two vertices ...

  5. PTA 1154 Vertex Coloring

    题目链接:1154 Vertex Coloring A proper vertex coloring is a labeling of the graph's vertices with colors ...

  6. PAT甲级——A1154 VertexColoring【25】

    A proper vertex coloring is a labeling of the graph's vertices with colors such that no two vertices ...

  7. django模型操作

    Django-Model操作数据库(增删改查.连表结构) 一.数据库操作 1.创建model表        

  8. Codeforces Round #369 (Div. 2)---C - Coloring Trees (很妙的DP题)

    题目链接 http://codeforces.com/contest/711/problem/C Description ZS the Coder and Chris the Baboon has a ...

  9. CF149D. Coloring Brackets[区间DP !]

    题意:给括号匹配涂色,红色蓝色或不涂,要求见原题,求方案数 区间DP 用栈先处理匹配 f[i][j][0/1/2][0/1/2]表示i到ji涂色和j涂色的方案数 l和r匹配的话,转移到(l+1,r-1 ...

  10. Codeforces Round #369 (Div. 2) C. Coloring Trees DP

    C. Coloring Trees   ZS the Coder and Chris the Baboon has arrived at Udayland! They walked in the pa ...

随机推荐

  1. 有关C++数据结构

    1.临时变量的访问速度远远大于成员变量. 2.C++中唯一一种函数返回值可以做左值的就是引用,本质上也是指针. 3.成员函数末尾加const,表示只读成员函数,不能修改成员变量的值.只读成员函数仅仅用 ...

  2. Bootstarp5第二弹

    四.网格系统 网格系统根据设备屏幕尺寸大小分为6类: col-<!--任意屏幕--> col-sm-<!--平板 - 屏幕宽度等于或大于 576px.--> col-md-&l ...

  3. Servlet和Maven项目

    Servlet执行流程 通过默认端口号访问到Tomcat服务器 通过类名访问到对应的项目 通过自定义的相应路径,访问到注释中的同名路径 即为执行流程 相应的Servlet对象由Tomcat服务器创建, ...

  4. 自己动手从零写桌面操作系统GrapeOS系列教程——12.QEMU+GDB调试

    学习操作系统原理最好的方法是自己写一个简单的操作系统. 写程序不免需要调试,写不同的程序调试方式也不同.如果做应用软件开发,相应的程序调试方式是建立在有操作系统支持的基础上的.而我们现在是要开发操作系 ...

  5. Linux基础知识归纳

    1.Linux:Linux is not Unix.主要用于企业的服务器端.Windows不开源(系统价格大概2000左右,安装软件也特别贵,例如Offers就6000左右等).基于内核的操作系统(r ...

  6. 【Visual Leak Detector】QT 中 VLD 输出解析(一)

    说明 使用 VLD 内存泄漏检测工具辅助开发时整理的学习笔记. 目录 说明 1. 使用方式 2. 无内存泄漏时的输出报告 1. 使用方式 在 QT 中使用 VLD 的方法可以查看另外几篇博客: [Vi ...

  7. Rancher系列文章-Rancher v2.6使用脚本实现导入集群

    概述 最近在玩 Rancher, 先从最基本的功能玩起, 目前有几个已经搭建好的 K8S 集群, 需要批量导入, 发现官网已经有批量导入的文档了. 根据 Rancher v2.6 进行验证微调后总结经 ...

  8. node.js介绍及简单例子

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  9. Java高频面试题(2023最新整理)

    Java的特点 Java是一门面向对象的编程语言.面向对象和面向过程的区别参考下一个问题. Java具有平台独立性和移植性. Java有一句口号:Write once, run anywhere,一次 ...

  10. 集合-ArrayList 源码分析

    1.概述 ArrayList 是一种变长的集合类,基于定长数组实现.ArrayList 允许空值和重复元素,当往 ArrayList 中添加的元素数量大于其底层数组容量时,其会通过扩容机制重新生成一个 ...