Statement

对一张简单无向图进行 \(k\) 染色,满足对于每条边的两个端点颜色不同,求方案数。

\(n,m\leq 30\)。

Solution

无向图 \(k\) 染色问题,很经典的问题。

这道题的突破口是 \(n,m\) 均不大,所以 \(m-n\) 不会很大,这提示我们使用广义串并联图方法

具体地,根据 EI 和洛谷讨论区里的说法,我们套路性地考虑对于每条边设 \(DP\),\(f_i\) 表示如果这条边两个端点被染了不同的颜色,这条边内部被缩略的结构中有多少种染色方案。\(g_i\) 表示如果这两条边端点被染了相同颜色的方案数。

那么对于原图中的边显然有 \(f_{u,v}=1\) 和 \(g_{u,v}=0\)。

广义串并联图方法的套路是对每条边设置 \(DP\) 后删一度点直接把贡献乘入答案,缩二度点和叠重边更新 \(DP\) 值。

下述推导来自讨论区:

对于删一度点,将答案乘上 \((k-1)f_u+g_u\),表示枚举删的这个点的颜色。

对于缩二度点,\(f_e=f_u f_v(k-2)+g_u f_v+f_u g_v,g_e=f_u f_v(k-1)+g_u g_v\),表示枚举中间那个点的颜色并分讨。

对于叠重边,\(f_e=f_u f_v,g_e=g_u g_v\),表示乘法原理。

现在图中的点满足了 \(n\leq \frac{2m}{3}\) 即 \(n\leq 20\)。

考虑对每一个颜色设一个集合幂级数,答案就是这些集合幂级数子集卷积的结果。

具体地,我们先假设所有边都取到了 \(f\) 的贡献,然后如果有一个颜色的集合包含了这条边的两个端点,就需要乘上一个 \(\frac{g}{f}\)。容易发现 \(f\) 总是非 \(0\) 的,所以一定存在逆元。这些贡献容易一遍 \(\text{FWT}\) 计算答案。

现在我们需要快速求集合幂级数 \(F\) 的 \(k\) 次方。然而 \(n\) 有 \(20\) 级别,所以需要 \(\ln\) 再 \(\exp\) 回去。复杂度是 \(O(2^n n^2)\) 的。

\(\ln,\exp\) 直接对占位幂级数 \(O(n^2)\) 求就可以了。

式子:

\(\ln:g_n=f_n-\frac{1}{n}\sum_{i=1}^{n-1} g_i i f_{n-i}\)。需要保证常数项为 \(1\)。

\(\exp:g_n=\frac{1}{n}\sum_{i=1}^{n} f_i i g_{n-i}\)。需要保证常数项为 \(0\)。

#include <cstdio>
using namespace std;
int read(){
char c=getchar();int x=0;
while(c<48||c>57) c=getchar();
do x=(x<<1)+(x<<3)+(c^48),c=getchar();
while(c>=48&&c<=57);
return x;
}
const int N=33,P=998244353;
typedef long long ll;
int qp(int a,int b=P-2){
int res=1;
while(b){
if(b&1) res=(ll)res*a%P;
a=(ll)a*a%P;b>>=1;
}
return res;
}
int n,m,k,res,cnt;
int f[N][N],g[N][N];
bool del[N];
int deg[N];
int F[1<<20];
int inv[21],id[N];
namespace Subset{
int n;
int f[21][1<<20];
int g[21][1<<20];
void inc(int &x,int v){if((x+=v)>=P) x-=P;}
void dec(int &x,int v){if((x-=v)<0) x+=P;}
void FWT(int *arr){
for(int i=1;i<(1<<n);i<<=1)
for(int j=0;j<(1<<n);j+=(i<<1))
for(int k=j;k<(j|i);++k) inc(arr[k|i],arr[k]);
}
void IFWT(int *arr){
for(int i=1;i<(1<<n);i<<=1)
for(int j=0;j<(1<<n);j+=(i<<1))
for(int k=j;k<(j|i);++k) dec(arr[k|i],arr[k]);
}
void getln(int *arr){
for(int i=0;i<=n;++i)
for(int s=0;s<(1<<n);++s) f[i][s]=g[i][s]=0;
for(int s=0;s<(1<<n);++s) f[__builtin_popcount(s)][s]=arr[s];
for(int i=0;i<=n;++i) FWT(f[i]);
for(int i=1;i<=n;++i){
for(int j=1;j<i;++j)
for(int s=0;s<(1<<n);++s)
dec(g[i][s],(ll)g[j][s]*j%P*f[i-j][s]%P);
for(int s=0;s<(1<<n);++s)
g[i][s]=((ll)g[i][s]*inv[i]+f[i][s])%P;
}
for(int i=0;i<=n;++i) IFWT(g[i]);
for(int s=0;s<(1<<n);++s) arr[s]=g[__builtin_popcount(s)][s];
}
void getexp(int *arr){
for(int i=0;i<=n;++i)
for(int s=0;s<(1<<n);++s) f[i][s]=g[i][s]=0;
for(int s=0;s<(1<<n);++s) f[__builtin_popcount(s)][s]=arr[s];
for(int i=0;i<=n;++i) FWT(f[i]);
for(int s=0;s<(1<<n);++s) g[0][s]=1;
for(int i=1;i<=n;++i){
for(int j=1;j<=i;++j)
for(int s=0;s<(1<<n);++s)
inc(g[i][s],(ll)f[j][s]*j%P*g[i-j][s]%P);
for(int s=0;s<(1<<n);++s)
g[i][s]=(ll)g[i][s]*inv[i]%P;
}
for(int i=0;i<=n;++i) IFWT(g[i]);
for(int s=0;s<(1<<n);++s) arr[s]=g[__builtin_popcount(s)][s];
}
}
int main(){
n=read();m=read();k=read();res=1;
for(int i=1;i<=m;++i){
int u=read(),v=read();
f[u][v]=f[v][u]=1;
++deg[u];++deg[v];
}
bool fl=1;
while(fl){
fl=0;
for(int u=1;u<=n;++u)
if(deg[u]==1){
fl=1;
del[u]=1;
for(int v=1;v<=n;++v)
if(f[u][v]){
--deg[u];--deg[v];
res=((ll)f[u][v]*(k-1)+g[u][v])%P*res%P;
f[u][v]=f[v][u]=0;
g[u][v]=g[v][u]=0;
}
break;
}
if(fl) continue;
for(int u=1;u<=n;++u)
if(deg[u]==2){
fl=1;
int x=0,y=0;
for(int v=1;v<=n;++v)
if(f[u][v]){if(x) y=v;else x=v;}
deg[u]=0;del[u]=1;
int ff=(ll)f[u][x]*f[u][y]%P;
int nf=((ll)ff*(k-2)+(ll)g[u][x]*f[u][y]+(ll)f[u][x]*g[u][y])%P;
int ng=((ll)ff*(k-1)+(ll)g[u][x]*g[u][y])%P;
f[u][x]=f[x][u]=f[u][y]=f[y][u]=0;
g[u][x]=g[x][u]=g[u][y]=g[y][u]=0;
if(!f[x][y]&&!f[y][x]){
f[x][y]=f[y][x]=nf;
g[x][y]=g[y][x]=ng;
}
else{
f[y][x]=f[x][y]=(ll)f[x][y]*nf%P;
g[y][x]=g[x][y]=(ll)g[x][y]*ng%P;
--deg[x];--deg[y];
}
break;
}
}
for(int i=1;i<=n;++i) if(!del[i]&&!deg[i]) res=(ll)res*k%P,del[i]=1;
for(int i=1;i<=n;++i)
if(!del[i]) id[i]=cnt++;
if(cnt){
inv[1]=1;Subset::n=cnt;
for(int i=2;i<=cnt;++i) inv[i]=(ll)inv[P%i]*(P-P/i)%P;
for(int i=0;i<(1<<cnt);++i) F[i]=1;
for(int i=1;i<=n;++i){
if(del[i]) continue;
for(int j=1;j<i;++j){
if(del[j]) continue;
if(f[i][j]){
res=(ll)res*f[i][j]%P;
int ver=(1<<id[i])|(1<<id[j]);
F[ver]=(ll)F[ver]*qp(f[i][j])%P*g[i][j]%P;
}
}
}
for(int i=1;i<(1<<cnt);i<<=1)
for(int j=0;j<(1<<cnt);j+=(i<<1))
for(int k=j;k<(j|i);++k) F[k|i]=(ll)F[k|i]*F[k]%P;
Subset::getln(F);
for(int i=0;i<(1<<cnt);++i) F[i]=(ll)F[i]*k%P;
Subset::getexp(F);
res=(ll)res*F[(1<<cnt)-1]%P;
}
printf("%d\n",res);
return 0;
}

ABC294Ex K-Coloring的更多相关文章

  1. PAT 甲级 1154 Vertex Coloring

    https://pintia.cn/problem-sets/994805342720868352/problems/1071785301894295552 A proper vertex color ...

  2. pat甲级 1154 Vertex Coloring (25 分)

    A proper vertex coloring is a labeling of the graph's vertices with colors such that no two vertices ...

  3. PAT_A1154#Vertex Coloring

    Source: PAT A 1154 Vertex Coloring (25 分) Description: A proper vertex coloring is a labeling of the ...

  4. PAT Advanced 1154 Vertex Coloring (25 分)

    A proper vertex coloring is a labeling of the graph's vertices with colors such that no two vertices ...

  5. PTA 1154 Vertex Coloring

    题目链接:1154 Vertex Coloring A proper vertex coloring is a labeling of the graph's vertices with colors ...

  6. PAT甲级——A1154 VertexColoring【25】

    A proper vertex coloring is a labeling of the graph's vertices with colors such that no two vertices ...

  7. django模型操作

    Django-Model操作数据库(增删改查.连表结构) 一.数据库操作 1.创建model表        

  8. Codeforces Round #369 (Div. 2)---C - Coloring Trees (很妙的DP题)

    题目链接 http://codeforces.com/contest/711/problem/C Description ZS the Coder and Chris the Baboon has a ...

  9. CF149D. Coloring Brackets[区间DP !]

    题意:给括号匹配涂色,红色蓝色或不涂,要求见原题,求方案数 区间DP 用栈先处理匹配 f[i][j][0/1/2][0/1/2]表示i到ji涂色和j涂色的方案数 l和r匹配的话,转移到(l+1,r-1 ...

  10. Codeforces Round #369 (Div. 2) C. Coloring Trees DP

    C. Coloring Trees   ZS the Coder and Chris the Baboon has arrived at Udayland! They walked in the pa ...

随机推荐

  1. iframe页面加载完成为什么还是获取不到里面的dom

    iframe页面加载完成为什么还是获取不到里面的dom? 因为Iframe是跨域,跨域的情况下是无法获取到iframe里面的DOM的,即使iframe加载完成,也无法获取到里面的DOM. 有什么方法获 ...

  2. 记一次Centos7上安装VNC服务

    需要部署oracle数据库,操作系统为Centos7.5,oracle数据库在linux上面部署必须要安装一些依赖包,安装好,当然可以通过静默化安装,时间紧任务重,就通过vnc服务来进行安装,桌面化操 ...

  3. Unity UI布局与适配

    目录 Canvas(画布) Basic Layout(基础布局) 实例 1.画布(Canvas) 画布是所有UI元素的父物体,任何UI元素都存在于画布之上.画布上所有UI元素的绘制顺序是根据其在场景中 ...

  4. git-bash打开自动执行某条命令的快捷方式创建

    "C:\Program Files\Git\git-bash.exe" -c "npm run dev" 创建一个快捷方式,在目标里面加上以上参数,然后运行. ...

  5. iOS C#远程推送证书.p12文件制作

    1.PushChat.certSigningRequest      请求证书文件 生成Certificate Signing Request (CSR): 2.填写你的邮箱和Common Name, ...

  6. react hooks(useState、useEffect、useRef详解)

    好巧不巧,工作了一年跳槽了,之前用的vue,现在用的react- 嗯!工作使人进步!现在开始学react吧! 切入正题- react hooks是React16.8.0之后出现的, 类组件存在的问题: ...

  7. Java-01enum常量特定方法

    OnJava8-Enum-常量特定方法 用枚举实现责任链模式 责任链(Chain Of Responsibility)设计模式先创建了一批用于解决目标问题的不同方法,然后将它们连成一条"链& ...

  8. 基于 Agora SDK 实现 Windows 端的多人视频互动(基于3.6.2版本)

    本文介绍如何通过 Agora SDK 在 Windows 平台快速实现互动直播.互动直播和实时通话的区别就在于,直播频道的用户有角色之分.你可以将角色设置为主播或者观众,其中主播可以收.发流,观众只能 ...

  9. 杂谈--User Story

    本篇用于给自己后续慢慢看,对敏捷感兴趣的小伙伴,可以自行去看官方文档或者各种网站的视频讲解,更详细. 对于敏捷开发来说,User Story是开发的基础,把原本需求拆成最小粒度的Story,以方便拆分 ...

  10. odoo 开发入门教程系列-模型和基本字段

    模型和基本字段 在上一章的末尾,我们创建一个odoo模块.然而,此时它仍然是一个空壳,不允许我们存储任何数据.在我们的房地产模块中,我们希望将与房地产相关的信息(名称(name).描述(descrip ...