【Gerald and Giant Chess】
一道计数类DP例题~~~
ps:P党似乎不多了……
我这只蒟蒻第一次写题解,而且计数类DP还是早上刚学的,现学现用,或者说是所谓的“浅谈”一番吧!况且这题写题解的人似乎并不多(大佬似乎不屑于光临此题)
进入正题
- 题目大意:扔给你一个h*w的棋盘,并给定n给不可以经过的格子的坐标,和(sang)蔼(xin)可(bing)亲(kuang)地让你计算从(1,1)开始走到(h,w)的合法路径的条数,答案对\(10^9+7\)取模。
看完题后,呵,简单,都做过过河卒这种题吧!递推在手,天下我有!!
大笑着,不经意间瞟了一下数据范围,笑容瞬间凝固……
- $1<=h,w<=10^{5},1<=n<=2000 $
啥玩意?
无奈,出门左转,逃!
够英明的选择,但还有更英明的选择——学习!没错,学习!
好的,依阁下高见,我来学习了。
孺子可教,吭吭,听好了(冒犯):
倘若你成了超人,通过了之前无法逾越的格子,那么你走到终点的路径总数是可以用一个组合数搞出来的。不会?那就对了,接着看。从起点走到终点,你必然走了\(h-1\)步往下,\(w-1\)步往右,对吧?总步数就是\(h+w-2\) ,然后想想组合数,整条路径我走了\(h-1\)步往下,剩下\(w-1\)步就确定了。那么换种说法,我从\(h+w-2\)步中选\(h-1\)步往下,就可以确定唯一的一条路径,则总方案数为\(C_{h+w-2}^{h-1}\)种,同理,走\(w-1\)步往下,也可以确定唯一的一条路径,有\(C_{h+w-2}^{w-1}\)种方案数。两者等价。(等价?质疑请了解\(C_n^m=C_n^{n-m}\))
但是,棋盘中有些点是不能走的,我们考虑用容斥原理去除多余方案。
\]
其中\(P_i\)表示经过i个不能走的点的路径,但是,此题n<=2000,容斥原理直接炸掉。(况且我也不会容斥原理,我太弱了)
但我们不急,不慌,不乱。想想DP,乱设一下,设\(f_i\)表示从(1,1)走到第i个不能走的点,且不经过其它不能走的点的方案数。推一下,设\(x_i,y_i\)为第i个不能通过的点(以\(x_i\)为第一关键字,\(y_i\)为第二关键字排好序后),我们可以用上文推到的东西先算出(1,1)这个点到总方案数,然后依照我们的定义:“不能经过其他无法通过的点”,所以要减去前\(i-1\)个点到此点的方案数(不合定义),就是\(f_i\)了,综上:
- \[f_i=C_{x_i+y_i-2}^{x_i-1}-\sum_{j=1}^{i-1}f_j·C_{x_i+y_i-x_j-x_j}^{x_i-x_j}
\] 我们可以让终点成为不可通过的点,答案就是\(f_{n+1}\)了。
嗯嗯,讲完了。
\(O(n^2)\) 的时间复杂度,完美AC。\(n<=2000\)
那么,再综合解题步骤:
以\(x_i\)为第一关键字,\(y_i\)为第二关键字排好序。
提前预处理出组合数所需要的逆元(逆元可以自学,复习时我可能会写来巩固一下)。
把终点加入\(f\)中,计算\(f_i\)的值,答案就是\(f_{n+1}\)
附上完整代码,放心食用。(pascal的,重点在思路,语言无太大关系)
const p=trunc(1e9)+7;
type
node=record
x,y:int64;
end;
var
fac,inv:array [0..200005] of int64;
f:array [0..3005] of int64;
a,c:array [0..3005] of node;
n,m,i,j,k,maxn:longint;
procedure msort(l,r:longint);
var
i,j,k,mid:longint;
begin
mid:=(l+r)>>1;
if (l<mid) then msort(l,mid);
if (mid+1<r) then msort(mid+1,r);
i:=l;
j:=mid+1;
k:=l;
while (i<=mid)and(j<=r) do
begin
if (a[i].x<a[j].x)or(a[i].x=a[j].x)and(a[i].y<a[j].y) then
begin
c[k]:=a[i];
inc(i);
inc(k);
end
else begin
c[k]:=a[j];
inc(j);
inc(k);
end;
end;
while (i<=mid) do
begin
c[k]:=a[i];
inc(i);
inc(k);
end;
while (j<=r) do
begin
c[k]:=a[j];
inc(j);
inc(k);
end;
for i:=l to r do a[i]:=c[i];
end;
function qpow(x,y:int64):int64;
var
res:int64;
begin
res:=1;
while (y>0) do
begin
if (y and 1=1) then res:=res*x mod p;
x:=x*x mod p;
y:=y>>1;
end;
exit(res);
end;
procedure prepare;
var
i:longint;
begin
fac[0]:=1;
for i:=1 to maxn do fac[i]:=fac[i-1]*i mod p;
inv[maxn]:=qpow(fac[maxn],p-2);
for i:=maxn-1 downto 0 do inv[i]:=inv[i+1]*(i+1) mod p;
end;
function combination(n,m:int64):int64;
begin
if (n<m) then exit(0);
exit(fac[n]*inv[n-m] mod p*inv[m] mod p);
end;
begin
//assign(input,'path.in');reset(input);
//assign(output,'path.out');rewrite(output);
readln(n,m,k);
if (n<m) then maxn:=m<<1
else maxn:=n<<1;
for i:=1 to k do read(a[i].x,a[i].y);
k:=k+1;
a[k].x:=n;a[k].y:=m;
msort(1,k);
prepare;
for i:=1 to k do
begin
f[i]:=combination(a[i].x+a[i].y-2,a[i].x-1);
for j:=1 to i-1 do
f[i]:=(f[i]-f[j]*combination(a[i].x+a[i].y-a[j].x-a[j].y,a[i].x-a[j].x) mod p+p) mod p;
end;
write(f[k]);
//close(input);close(output);
end.
曲终,继续努力,备战CSP2019。
时隔两年,因某些原因补上 \(\text{C++}\) 代码
#include <cstdio>
#include <algorithm>
#define RE register
#define IN inline
#define LL long long
using namespace std;
const int N = 2e5 + 5, P = 1e9 + 7;
int n, m, k, maxn;
LL fac[N], inv[N], f[2005];
struct node{int x, y;}a[2005];
IN bool cmp(node a, node b){return (a.x < b.x ? 1 : (a.x == b.x ? a.y < b.y: 0));}
IN int fpow(LL x, int y){LL s = 1; for(; y; y >>= 1, x = x * x % P) if (y & 1) s = s * x % P; return s;}
IN int C(int n, int m){if (n < m) return 0; return fac[n] * inv[n - m] % P * inv[m] % P;}
int main()
{
scanf("%d%d%d", &n, &m, &k), maxn = max(n, m) << 1;
for(RE int i = 1; i <= k; i++) scanf("%d%d", &a[i].x, &a[i].y);
a[++k] = node{n, m}, sort(a + 1, a + k + 1, cmp), fac[0] = inv[0] = 1;
for(RE int i = 1; i <= maxn; i++) fac[i] = fac[i - 1] * i % P;
inv[maxn] = fpow(fac[maxn], P - 2);
for(RE int i = maxn - 1; i; i--) inv[i] = inv[i + 1] * (i + 1) % P;
for(RE int i = 1; i <= k; i++)
{
f[i] = C(a[i].x + a[i].y - 2, a[i].x - 1);
for(RE int j = 1; j < i; j++)
f[i] = (f[i] - f[j] * C(a[i].x + a[i].y - a[j].x - a[j].y, a[i].x - a[j].x) % P + P) % P;
}
printf("%lld\n", f[k]);
}
【Gerald and Giant Chess】的更多相关文章
- 【题解】CF559C C. Gerald and Giant Chess(容斥+格路问题)
[题解]CF559C C. Gerald and Giant Chess(容斥+格路问题) 55336399 Practice: Winlere 559C - 22 GNU C++11 Accepte ...
- dp - Codeforces Round #313 (Div. 1) C. Gerald and Giant Chess
Gerald and Giant Chess Problem's Link: http://codeforces.com/contest/559/problem/C Mean: 一个n*m的网格,让你 ...
- CodeForces 559C Gerald and Giant Chess
C. Gerald and Giant Chess time limit per test 2 seconds memory limit per test 256 megabytes input st ...
- Gerald and Giant Chess
Gerald and Giant Chess time limit per test 2 seconds memory limit per test 256 megabytes input stand ...
- CF559C Gerald and Giant Chess
题意 C. Gerald and Giant Chess time limit per test 2 seconds memory limit per test 256 megabytes input ...
- E. Gerald and Giant Chess
E. Gerald and Giant Chess time limit per test 2 seconds memory limit per test 256 megabytes2015-09-0 ...
- Codeforces Round #313 (Div. 1) C. Gerald and Giant Chess DP
C. Gerald and Giant Chess Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest ...
- codeforces(559C)--C. Gerald and Giant Chess(组合数学)
C. Gerald and Giant Chess time limit per test 2 seconds memory limit per test 256 megabytes input st ...
- Codeforces 559C Gerald and Giant Chess【组合数学】【DP】
LINK 题目大意 有一个wxh的网格,上面有n个黑点,问你从(1,1)走到(w,h)不经过任何黑点的方案数 思路 考虑容斥 先把所有黑点按照x值进行排序方便计算 \(dp_{i}\)表示从起点走到第 ...
- 【CF559C】 Gerald and Giant Chess(计数,方案数DP,数论)
题意:给出一个棋盘为h*w,现在要从(1,1)到(h,w),其中有n个黑点不能走,问有多少种可能从左上到右下 (1 ≤ h, w ≤ 105, 1 ≤ n ≤ 2000),答案模10^9+7 思路:从 ...
随机推荐
- docker给已存在的容器添加或修改端口映射
简述: 这几天研究了一下docker, 发现建立完一个容器后不能增加端口映射了,因为 docker run -p 有 -p 参数,但是 docker start 没有 -p 参数,让我很苦恼,无奈谷歌 ...
- Java开发学习(四十五)----MyBatisPlus查询语句之映射匹配兼容性
1.映射匹配兼容性 我们已经能从表中查询出数据,并将数据封装到模型类中,这整个过程涉及到一张表和一个模型类: 之所以数据能够成功的从表中获取并封装到模型对象中,原因是表的字段列名和模型类的属性名一样. ...
- CentOS Linux 的安装
CentOS Linux 的安装 作者:Grey 原文地址: 博客园:CentOS Linux 的安装 CSDN:CentOS Linux 的安装 说明 本安装说明是基于 Windows 10 下 V ...
- <五>模板的完全特例化和非完全特例化
模板作为C++泛型编程的基础十分重要,其使得一份代码能用于处理多种数据类型.而有些时候,我们会希望对一些特定的数据类型执行不同的代码,这时就需要使用模板特例化(template specializat ...
- 如何使用 IdGen 生成 UID
在分布式系统中,雪花 ID 是一种常用的唯一 ID 生成算法.它通过结合时间戳.机器码和自增序列来生成 64 位整数 ID,可以保证 ID 的唯一性和顺序性. 在.Net 项目中,我们可以使用 IdG ...
- Jmeter 定时器之同步定时器(Synchronizing Timer)
性能测试中需要模拟多用户并发测试,此时需要用到同步定时器(Synchronizing Timer).如下图,模拟用户组的数量设置20,相当于20个用户(线程)并发 名词解释: 名称:定时器名称,可根据 ...
- 网络监测工具之Zabbix的搭建与测试方法(二)-- SNMP、OID和MIB概述
概念 SNMP是专门设计用于在 IP 网络管理网络节点的一种标准协议,它是一种应用层协议.SNMP使网络管理员能够管理网络效能,发现并解决网络问题以及规划网络增长.通过SNMP接收随机消息(及事件报告 ...
- 47.DRF实现分页
分页Pagination 当我们在PC 或者 App 有大量数据需要展示时,可以对数据进行分页展示.这时就用到了分页功能,分页使得数据更好的展示给用户 比如我们有1W+数据要返回给前端,数据量 ...
- C/C++语言 MD5例子
之前研究了一下在C中进行MD5加密,由于找了很久没有找到现成的库文件,所以所幸自己去写了一下.个人感觉C的便捷性没有Python好的原因就是这里. 下面是我写的一个例子. mian.cpp: 点击查看 ...
- P7914 [CSP-S 2021] 括号序列
简要题意 给定 \(k\),定义 "超级括号序列"(简称括号序列,下同) 字符串为: 仅由 ( ) * 三种字符组成. 下面令 \(S\) 为不超过 \(k\) 个 \(\ast\ ...